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Abstract

Recent advances in vision-language models (VLMs) have sig-
nificantly enhanced video understanding tasks. Instruction
tuning (i.e., fine-tuning models on datasets of instructions
paired with desired outputs) has been key to improving model
performance. However, creating diverse instruction-tuning
datasets is challenging due to high annotation costs and
the complexity of capturing temporal information in videos.
Existing approaches often rely on large language models to
generate instruction-output pairs, which can limit diversity
and lead to responses that lack grounding in the video con-
tent. To address this, we propose VideoSAVi (Self-Aligned
Video Language Model), a novel self-training pipeline that
enables VLMs to generate their own training data without
extensive manual annotation. The process involves three
stages: (1) generating diverse video-specific questions, (2)
producing multiple candidate answers, and (3) evaluating
these responses for alignment with the video content. This
self-generated data is then used for direct preference opti-
mization (DPO), allowing the model to refine its own high-
quality outputs and improve alignment with video content.
Our experiments demonstrate that even smaller models (0.5B
and 7B parameters) can effectively use this self-training
approach, outperforming previous methods and achieving
results comparable to those trained on proprietary prefer-
ence data. VideoSAVi shows significant improvements across
multiple benchmarks: up to 28% on multi-choice QA, 8% on
zero-shot open-ended QA, and 12% on temporal reasoning
benchmarks. These results demonstrate the effectiveness of
our self-training approach in enhancing video understanding
while reducing dependence on proprietary models.

1. Introduction

Vision-language models (VLMs) [23, 31, 42] have made
significant strides by integrating visual perception with the
reasoning capabilities of large language models (LLMs) [13,
38, 39]. These models excel in interpreting and generating
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Loading [MathJax]/extensions/MathMenu.jsFigure 1. Comparative performance of selected methods on three
multiple-choice QA benchmarks: (1) NExTQA, (2) EgoQA, and
(3) IntentQA. VideoSAVi sets a new state of the art, demonstrating
significant advancements in temporal reasoning and intent recogni-
tion for video understanding.

contextually relevant responses through the combination of
image encoders and language generation techniques. Build-
ing on this foundation, recent video-large language models
(Video-LLMs) [22, 29, 69] incorporate temporal dimensions,
enabling comprehensive video understanding by transform-
ing video frames into tokens that LLMs can process [25, 35].
While Video-LLMs demonstrate impressive capabilities in
tasks, such as video captioning and question answering, they
typically require vast, high-quality annotated datasets, mak-
ing them resource-intensive and limiting their scalability.

Instruction tuning, which involves training models to
follow specific commands and generate appropriate re-
sponses, has been pivotal in advancing both VLMs and
Video-LLMs [6, 31, 57, 62]. However, this approach faces
significant challenges in the video domain due to the
scarcity of large, high-quality training datasets. For in-
stance, while image-based datasets encompass up to 500K
instruction-response pairs [31], video instruction datasets
such as VideoInstruct-100K [35] contain only around 13K
unique videos. Creating extensive video instruction datasets,
whether through manual annotation or LLM generation, in-
curs substantial costs. For instance, models such as GPT-

1

ar
X

iv
:2

41
2.

00
62

4v
1 

 [
cs

.C
V

] 
 1

 D
ec

 2
02

4

https://videosavi.github.io/


4V [37] can cost around $200 to generate just 6,000 image
descriptions [12], with expenses rising further for more com-
plex or longer video data. This dependence on extensive
annotated data and usage of proprietary models often re-
stricts the adaptability of Video-LLMs, posing a barrier to
broader applications. Addressing this limitation, our study
demonstrates that Video-LLMs can independently generate
their own training data and align themselves with video con-
tent, thereby significantly reducing the dependency on large
annotated datasets and enhancing scalability.

Recent research has focused on synthetic data generated
by models, enabling the scalable, diverse, and low-cost cre-
ation of training data [1, 49]. This approach offers a promis-
ing alternative to manual annotations, allowing models to im-
prove their understanding across new tasks via self-training.
This leads us to two main research questions:
RQ1: How can we leverage synthetic data to enhance the

performance of Video-LLMs in video understanding tasks
without depending on expensive human annotations or
proprietary APIs?

RQ2: How can we ensure that synthetic data aligns with
video content to maintain the accuracy of model re-
sponses?

To address these questions, we propose VideoSAVi (Self-
Aligned Video Language Model), a novel self-training
pipeline that enables VLMs to generate and refine their
own training data without extensive manual annotation or
reliance on costly proprietary models. We ensure the gen-
erated synthetic data is aligned with video content through
direct preference optimization (DPO) [43]. Current DPO
methods rely on binary preferences [14], which do not fully
capture the finer relationships between different responses.
Further, initial iterations of self-training carry an inherent
risk of favoring less accurate responses that do not align
with the actual video content. To address these limitations,
VideoSAVi introduces enhancements, such as CLIP filtering
of responses, ensuring accurate and video-aligned responses.

Experiments demonstrate VideoSAVi’s state-of-the-art
(SOTA) ability to comprehend and reason over complex
video content across diverse tasks such as multi-choice QA,
open-ended QA, and temporal reasoning. Using a robust
self-training pipeline with DPO for precise vision-language
alignment, VideoSAVi achieves substantial benchmark per-
formance improvements over baseline models. Additionally,
iterative fine-tuning enables VideoSAVi to generate high-
quality synthetic training data, extending its capabilities to
novel prompts beyond its original training distribution. In
summary, our contributions are as follows:
1. We present VideoSAVi, a novel self-training framework

that generates synthetic data for fine-tuning Video-LLMs,
significantly reducing the reliance on expensive human
annotations or proprietary models.

2. We introduce CLIP-adjusted DPO, a novel optimization

approach that extends traditional preference learning with
visual similarity metrics to ensure video-grounded re-
sponses

3. We conduct extensive evaluations across multiple video
understanding benchmarks, demonstrating significant im-
provements: 28% on multi-choice QA, 8% on zero-shot
open-ended QA, and 12% on temporal reasoning bench-
marks, outperforming models that rely on proprietary
preference data for alignment through DPO.

Through this work, we address the dual challenges of enhanc-
ing the performance of Video-LLMs without incurring high
annotation costs and ensuring the alignment of synthetic data
with actual video content.

2. Related Work

2.1. Video-LLMs
Recent advancements in Video-LLMs have improved video
understanding, with models such as Video-LLaVA [29],
which uses unified visual representations, and Video-
LLaMA [68], which integrates audio-visual modalities.
However, these models are data- and computation-intensive,
as they rely on large-scale datasets for feature alignment.
Later models have focused on specific areas. LLaVA-NeXT-
Video [71] improves zero-shot understanding without ex-
plicit video training but lacks fine-grained temporal reason-
ing. VTimeLLM [17] achieves moment-level temporal un-
derstanding through structured training but requires detailed
annotations, limiting scalability. VideoLLM-Online [9] en-
ables real-time dialogue with continuous video streams but
demands high computational resources. Koala [52] uses key
frame-conditioned processing for efficiency, though it may
miss the continuous context needed for long videos. In con-
trast, our method, VideoSAVi, is a self-training framework
that generates its own training data to improve vision-text
alignment. By using DPO and iterative alignment with self-
generated data, VideoSAVi reduces reliance on large datasets
while achieving robust video understanding across various
tasks.

2.2. Learning from AI Feedback
Reinforcement learning from human feedback (RLHF) is
widely used to align LLMs with human preferences and
ensure safer responses [7, 39, 50]. However, RLHF re-
quires costly high-quality human-collected preference data.
To address this, reinforcement learning from AI feedback
(RLAIF) methods have been proposed [19, 51], which use
AI-generated feedback instead of human feedback to guide
model training. These methods typically use proximal pol-
icy optimization (PPO) [45] for training. For multimodal
models, Ahn et al. [2] introduce the VLM-RLAIF frame-
work to enhance video-text alignment. Unlike PPO-based
approaches, we employ DPO [43], which directly optimizes
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Figure 2. Overview of VideoSAVi’s self-training pipeline. Starting with a baseline model trained on instruction data, our pipeline consists
of five key components: (1) Question Generation: generates diverse “What”, “Why”, and “How” questions for each video using ground
truth captions as context; (2) Answer Generation: produces five candidate answers at different temperatures [0.3, 0.5, 0.7, 0.9, 1.0] for each
question; (3) Preference Selection: evaluates generated answers using a structured prompt template, resulting in scores from 1 to 5; (4)
CLIP Filtering: refines the highest and lowest scored responses as positive/negative pairs using CLIP similarity scores to ensure video-text
alignment; (5) DPO Finetune: optimizes the model using the filtered preference pairs. The model iteratively improves through a self-training
process, where the DPO-tuned model from each iteration serves as the baseline for the subsequent iteration. → trainable, → frozen.

preference learning without the need for reward modeling
or policy optimization, offering a more streamlined alter-
native to traditional reinforcement learning methods. Re-
cent work has applied DPO to Video-LLMs. For example,
LLaVA-HOUND-DPO [70] and its extension i-SRT [1] use
preference data generated from proprietary models such as
GPT, with i-SRT adding iterative refinement for further per-
formance gains. LLaVA-NeXT-DPO [30] follows a similar
training recipe with a newer backbone (LLaVA-NeXT-Video
[71]). In contrast, our work demonstrates that Video-LLMs
can generate their own synthetic preference data and itera-
tively refine themselves for improved multimodal alignment.

2.3. Self-Training

Self-training has become a powerful method for improving
language model performance [15, 18, 46, 53, 63, 66]. The
main idea is for models to generate their own training data
and use it to refine their performance iteratively, with notable
success in enhancing reasoning and task-specific capabili-
ties. Recent advances have applied self-training to vision-
language models (VLMs) [12, 48, 49] and Video-LLMs [74].
However, these methods often rely purely on prompting [12]
to generate preference data, use expensive GPT APIs [48],
or depend on iterative learning from feedback with ground
truth labels [74]. Additionally, directly prompting models
to generate preference data can lead to performance issues
due to the inherent instability of LLMs [64]. This creates
a key research gap: developing synthetic preference data
that can improve model performance without the limitations
of current methods. Our work addresses this by combining
self-questioning LLMs [49, 55] with model feedback mecha-
nisms [2], enabling the self-training of a Video-LLM aligned

with model-based preferences through DPO [43].

3. VideoSAVi
VideoSAVi is a Video-LLM that we trained using model-
generated (synthetic) DPO preference data. Our improve-
ments stem from two key aspects that address limitations
in prior work. First, in vision-text alignment, previous ap-
proaches rely on GPT models’ world knowledge [38] to
generate DPO preference data [70] or use significantly more
instruction-following data [2]. In contrast, we rely solely
on our baseline model for prompt generation as well as for
evaluating and selecting the accepted and rejected responses.
Second, the chosen and rejected responses are not always
grounded in actual video content. We address this by using
CLIP [42] similarity scores and adapting the DPO loss func-
tion accordingly. As shown in Figure 2, our self-training
pipeline enables VideoSAVi to iteratively improve through
five key stages, from question generation to DPO finetuning.

3.1. Training Pipeline
Stage I: Supervised Fine-Tuning. We perform super-
vised fine-tuning (SFT) on the model using the instruction-
following datasets such as LLaVA-Instruct [31] and
VideoInstruct-100K [35]. This phase serves as a crucial
warmup, enabling the Video-LLM to comprehend and re-
spond to varied types of instructions. In our pipeline, this
process trains the model to align effectively with the in-
tended behavior for several of our core tasks: evaluating the
response quality (i.e., acting as a judge), generating contextu-
ally relevant questions, and providing answers to these ques-
tions. After this stage, no additional instruction-following
data is used.
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Algorithm 1 Self-Training with CLIP-Adjusted DPO Loss
1: Input: Video datasets D = {DVIDAL, DCharades, DWebVid}; For each

D′ ∈ D:
• Videos {vD′

j }
ND′
j=1

• Captions {cD′
j }

ND′
j=1

Initial model M and parameters θ0; Iterations T ; Questions per video
K; Learning rate η; Scaling factor β; Regularization λ

2: Output: Optimized model parameters θT

3: for t = 0 to T − 1 do
4: (1) Generate Questions
5: for each D′ ∈ D do
6: for j = 1 to ND′ do
7: for k = 1 to K do
8: Generate question qj,k using Mt(cD

′
j )

9: end for
10: end for
11: end for
12: (2) Generate Answers
13: for each qj,k do
14: for i = 1 to 5 do
15: Generate answer aj,k,i using Mt(vD

′
j , qj,k)

16: end for
17: end for
18: (3) Evaluate and Select Preferences
19: for each qj,k do
20: for i = 1 to 5 do
21: Compute score si = Mt(vD

′
j , cD

′
j , qj,k, aj,k,i)

22: end for
23: a+k = aj,k,argmaxi si , a−k = aj,k,argmini si
24: (4) CLIP Filtering
25: c+k = CLIP(vD

′
j , a+k ), c−k = CLIP(vD

′
j , a−k )

26: Assign sk = +1 if c+k ≥ c−k else sk = −1
27: Add (vD

′
j , qj,k, a

+
k , a−k , sk) to D

28: end for
29: (5) Finetune using DPO
30: Adjusted DPO loss:

LTotal(θ) = −
∑
D

[
log σ (βsk(δθ − δref))

+ λ log pθ(a
+
k | vj , qk)

]
31: Update model parameters:

θt+1 ← θt − η∇θLTotal(θ
t)

32: end for
33: return θT

Stage II: Self-Training. Starting from the SFT model
checkpoint obtained in Stage I, we refine the model’s per-
formance through iterative self-training on synthetic data.
Utilizing three video datasets—VIDAL [73], STAR (Cha-
rades) [58], and WebVid [5]—we generate contextually rel-
evant question-answer pairs. The model evaluates its own
generated answers to produce preference data for DPO train-
ing. Through this iterative process, we progressively enhance
the model’s judgment quality and response accuracy. De-
tailed methodology is provided in the following section.

3.2. Self-Training

Following the initial SFT phase, we introduce an itera-
tive refinement process to further optimize our model, as
detailed in Algorithm 1. Starting with the model M0 ob-
tained from Stage I, we use it across all datasets D ∈
{DVIDAL, DCharades, DWebVid}. For each video vj ∈ D, we
generate synthetic question-answer pairs (qk, ak) using the
ground truth captions cj as context. The model M0 also
serves as a judge to evaluate the quality of these generated
answers, producing quality scores sk. We select the answer
with the highest score as the positive example a+k and the
answer with the lowest score as the negative example a−k .

To enhance the robustness of our preference data for DPO,
we implement a CLIP-based adjustment mechanism. For
each pair (a+k , a

−
k ), we compute the CLIP similarity scores

between the video vj and each answer, and determine a per-
example sign sk to adjust the DPO loss accordingly. The
model then undergoes iterative self-training, updating the
model parameters θt+1 by minimizing the adjusted DPO
loss over the collected preferences from iteration t. The per-
example sign sk adjusts the loss to account for cases where
the CLIP model indicates that the negative example is more
aligned with the video content than the positive example,
ensuring that the DPO training process favors the response
that is better aligned with the video content. This approach
aligns video and text modalities within a unified framework.

3.2.1. Question Generation

Unlike previous approaches that rely on well-annotated data
[2, 70] or learnable question generation [49], we generate
three types of questions from ground truth captions: What,
Why, and How. What questions target concrete details
(e.g., “What does the person pick up while putting away
the dishes?”), improving visual recognition. Why questions
focus on causal reasoning (e.g., “Why does the person put
the dishes in the cabinet?”), enhancing intent understanding.
How questions drive procedural understanding (e.g., “How
does the person clean the floor using the vacuum cleaner?”),
strengthening temporal reasoning. Questions are regenerated
in each self-training iteration, though Why questions may
occasionally induce hallucination.

3.2.2. Answer Generation

For each generated question, the model produces five can-
didate answers at different temperatures ([0.3, 0.5, 0.7, 0.9,
1.0]). Using different temperature values helps ensure diver-
sity in the generated responses while maintaining varying
degrees of creativity and precision. Lower temperatures (i.e.,
0.3, 0.5) tend to produce more focused and conservative
responses, while higher temperatures (i.e., 0.7, 1.0) allow for
more diverse and creative answers.
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3.2.3. Preference Selection
This component of our framework is critical, as it evalu-
ates the five answers generated in the previous stage for
each of the three previously derived questions. Unlike prior
work that relies on paid APIs [70] or explicit visual con-
text for preference selection [1, 2], our approach enables
the Video-LLM to serve as its own evaluator. Inspired by
recent self-rewarding works [11, 40, 65], the model assesses
its responses using only the video caption as reference. This
self-evaluation process facilitates the creation of high-quality
preference data, which is then used to fine-tune the model
via DPO. The evaluation criteria include five key metrics to
ensure that the model’s responses are contextually relevant
and grounded in the video:
1. Relevance: Assesses how well the generated answer ad-

dresses the question, ensuring logical coherence between
question and answer.

2. Accuracy: Measures the factual correctness of the an-
swer based on the video caption, crucial for avoiding
hallucinations.

3. Temporal Grounding: Evaluates whether the answer
correctly references the timing and sequence of events,
essential for time-sensitive responses in video tasks.

4. Clarity: Ensures that the answer is clear, concise, and
free from grammatical errors, enhancing usability and
accessibility.

5. Groundedness: Checks if the answer relies solely on
information from the video caption without introducing
unsupported details, maintaining factual consistency.

By applying these criteria, the model ranks its responses
from 1 (lowest) to 5 (highest).

3.2.4. CLIP Filtering of Preference Data
To enhance the robustness of our preference data for DPO,
we address instances where the model’s self-evaluation may
incorrectly rank generated responses in initial iterations of
self-training. Specifically, there are cases where the rejected
answer is more aligned with the video content than the cho-
sen answer. To mitigate this issue, we introduce a CLIP-
based [42] adjustment mechanism that leverages CLIP’s abil-
ity to measure the similarity between images (video frames)
and text. For each pair of positive and negative examples
(a+k , a

−
k ), we compute the CLIP similarity scores between

the video vj and each answer:

c+k = CLIP(vj , a+k ), c−k = CLIP(vj , a−k ) (1)

Based on these scores, we determine a per-example sign
sk to adjust the DPO loss:

sk =

{
+1, if c+k ≥ c−k
−1, if c+k < c−k

(2)

This adjustment ensures that if CLIP indicates the negative
example is more aligned with the video content, the loss

function is modified to favor the negative example during
training. The adjusted DPO loss is defined as:

LDPO(θ) = − log σ (βsk (δθ − δref)) , (3)

where δθ = log pθ(a
+
k | qk, vj)− log pθ(a

−
k | qk, vj), δref =

log pref(a
+
k | qk, vj) − log pref(a

−
k | qk, vj), β is a scaling

factor, and σ(·) is the sigmoid function. This per-example
adjustment allows the training process to favor responses
that are better aligned with the video content, as determined
by CLIP, thereby improving the model’s alignment between
vision and text.

3.2.5. DPO Finetuning

After CLIP filtering, we fine-tune using DPO with scaling
factors α = 1.0 and β = 0.1. Following [12], we incorpo-
rate regularization through log probability ratios between
current and reference models:

LTotal(θ) = −
∑
D

[
log σ (βsk(δθ − δref))

+ λ log pθ(a
+
k | vj , qk)

]
(4)

The CLIP-adjusted sign sk modifies the preference gradi-
ent direction, ensuring that the model learns to favor re-
sponses better aligned with visual content. Specifically,
when sk = −1, the gradient encourages decreasing the
probability ratio between the originally chosen response and
the alternative, effectively inverting the preference based on
CLIP’s visual similarity assessment. This adjustment helps
prevent the model from overfitting to purely language-based
preferences and maintains visual grounding throughout the
optimization process. Additionally, the regularization term
λ log pθ(a

+
k | vj , qk) prevents excessive deviation from the

reference model’s learned knowledge while allowing suffi-
cient flexibility to incorporate new video-text alignments.

While we investigated DPO variants such as Robust-
DPO [44], IPO [3], and hinge-based loss [32], standard
sigmoid-based DPO offered the optimal balance between
performance and efficiency. By refining preference gradients
to favor visually aligned, semantically appropriate responses,
our approach uses DPO to align model outputs with video
content—improving video-text grounding without requiring
external labeled data or proprietary models.

4. Experiments and Results

To evaluate the effectiveness of our proposed method, we
conduct extensive experiments and ablation studies across
various benchmarks, comparing our results with SOTA mod-
els in the literature.
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Figure 3. Qualitative examples showing VideoSAVi’s fine-grained video understanding capabilities. Left: Our model provides a
precise temporal sequence for dough preparation (“rolling on table” → “rolling across flour” → “placing in tray”), in contrast to i-SRT’s [1]
imprecise ordering of similar actions. Right: VideoSAVi accurately captures subtle behavioral details such as “scratching eyes” that occurred
before the girl’s interaction, while baseline i-SRT incorrectly predicts generic toy-playing actions.

Dataset Instruction Pairs #Vid Total Questions

LLaVA [31] 665k 259k* –
VInstruct [35] 100k 13.3k –

Self-Training Data

Star [58] – 15,970 23,955
Vidal [73] – 3,994 5,991
WebVid [5] – 3,970 5,955
Generated Pref. – 11.9k 35.9k

Total 765k 308k† 35.9k

Table 1. Dataset statistics for VideoSAVi training. *Images only.
†Includes images and videos.

4.1. Experimental Setup

Model Architecture. We train two variants of VideoSAVi.
The first variant builds on VideoLLaVA [29], using pre-
trained weights from LLaVA-HOUND [70]. It integrates
Vicuna-7B-v1.5 [72] as the LLM, with LanguageBind [73]
as the image and video encoder. Additionally, we incorporate
a LoRA adapter [16] for efficient fine-tuning. The second
variant of VideoSAVi adopts the LLaVA-NeXT architecture
[20] with interleaving [21]. This model uses Qwen v1.5 [4]
as the LLM, which we evaluate in both its 0.5B and 7B
versions. For visual encoding, it employs the SigLIP-400M
model [67]. This variant is initialized directly with SFT
weights, thus skipping the warmup SFT fine-tuning phase.

Training Datasets. For Stage I (supervised fine-tuning,
we perform warmup training using the VideoInstruct-100K
[35] and LLaVA instruction tuning datasets [31]. For Stage
II (self-training), we use raw video data from the STAR

(Charades) [58], WebVid [5], and Vidal [73] datasets, from
which our model generates preference data. Table 1 provides
a detailed breakdown of all the datasets used.

4.2. Benchmarks

We evaluate VideoSAVi on the following tasks:

1. Temporal Reasoning: For this task, we use the Temp-
Compass benchmark [33] for evaluation, which covers
various temporal aspects such as action (identification
of coarse and fine-grained movements), attribute change
(recognition of temporal changes in object properties like
size, shape, and color), speed (perception of absolute and
relative motion velocity), direction (comprehension of
object and camera movement orientation), and event or-
der (understanding the chronological sequence of events
in videos) across four main tasks: (1) multi-choice QA,
(2) yes/no QA, (3) caption matching, and (4) caption
generation. The evaluation is conducted using GPT-3.5-
Turbo-0125.

2. Multi-choice QA: For this task, the model must choose
the correct answer from a given set of choices. The
benchmarks include NExTQA [59], EgoSchema [36] and
IntentQA [24].

3. Open-ended QA: For this task, the model generates an-
swers to questions related to the video in freestyle form
without any choices provided in the input prompt. This is
a zero-shot QA evaluation performed on three datasets:
MSVD-QA [8], MSRVTT-QA [60], and TGIF-QA [27].
This evaluation is also conducted using GPT-3.5-Turbo-
0125.
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Method LLM Act Dir Spd Evt Attr Avg

SF-LLaVA [61] 7B 52.3 33.5 27.4 36.3 33.1 36.5
Video-ChatGPT [35] 7B 51.3 39.7 37.6 42.3 40.9 42.4
Video-LLaMA [68] 13B 62.4 34.8 34.5 43.8 40.4 43.2
LLaMA-VID [28] 7B 61.8 38.1 38.2 55.9 40.9 47.0
Video-LLAVA [29] 7B 70.9 41.6 43.4 46.5 38.3 48.1
Video-STaR [74] 7B 81.4 36.9 38.2 37.1 50.7 50.3
VideoChat2 [26] 7B 70.1 43.8 45.3 44.8 48.6 50.5

VideoSAVi-Vicuna 7B 67.7 41.4 39.4 40.3 49.9 47.7
VideoSAVi-Qwen .5B 64.2 42.7 44.7 44.5 47.9 48.8
VideoSAVi-Qwen 7B 83.2 42.3 48.4 46.9 49.6 54.1

Proprietary Model Preference Data

LLaVA-NeXT [30] 7B 79.6 45.2 44.3 48.0 47.7 53.0
LLaVA-HOUND [70] 7B 80.4 44.1 43.5 50.6 58.9 55.5
i-SRT [1] 7B 80.6 43.4 44.7 52.4 58.7 56.0

Table 2. Temporal reasoning results on TempCompass [33]. All
values are in percentages (%). Act: Action (activity recognition),
Dir: Direction (motion tracking), Spd: Speed (motion rate), Evt:
Event (sequence ordering), and Attr: Attribute (property changes).

Method LLM NExTQA EgoQA IntentQA

Video-LLaMA2 [10] 7B – 51.7 –
MovieChat+ [47] 7B 54.8 – –
Vista-LLM [34] 7B 60.7 – –
Video-LLAVA [29] 7B 49.2 18.8 48.6
SF-LLaVA [61] 7B 64.2 47.1 60.1
VideoAgent [54] GPT4 71.3 60.2 –
VideoTree [56] GPT4 73.5 66.2 66.9

VideoSAVi-Vicuna 7B 38.2 10.2 41.6
VideoSAVi-Qwen 0.5B 57.8 31.6 54.7
VideoSAVi-Qwen 7B 74.1 57.2 76.4

Proprietary Model Preference Data

LLaVA-NeXT [30] 7B 52.4 35.0 53.5
LLaVA-HOUND [70] 7B 61.6 36.1 58.6
i-SRT [1] 7B 63.0 46.2 59.3

Table 3. Multi-choice QA results on NExTQA [59], EgoSchema
(EgoQA) [36] and IntentQA [24] benchmarks. All values are in
percentages (%).

4.3. Results
We compare VideoSAVi with various SOTA video language
models. Our main comparison is with another self-training-
based model called Video-STaR [74], as well as methods
that use proprietary models to generate DPO preference data,
such as LLaVA-NeXT-DPO [30], LLaVA-HOUND-DPO
[70], and i-SRT [1]. We also compare our approach with
training-free methods such as VideoAgent [54], VideoTree
[56], and Slow-Fast-LLaVA [61]. Tables 2, 3, and 4 sum-
marize the results for the tasks of temporal reasoning, multi-
choice QA, and open-ended QA, respectively.

Temporal Reasoning VideoSAVi shows significant im-
provements in temporal reasoning on TempCompass dataset,

Method LLM MSVD MSRVTT TGIF

Acc Scr Acc Scr Acc Scr

Video-ChatGPT [35] 7B 68.6 3.8 58.9 3.4 47.8 3.2
LLaMA-VID [28] 7B 69.7 3.7 57.5 3.2 – –
Video-LLAVA [29] 7B 70.1 3.9 58.6 3.5 49.1 3.0
VideoChat2 [26] 7B 70.0 3.9 54.1 3.3 – –
Video-STaR [74] 7B 71.3 4.0 58.2 3.5 47.3 3.3
VLM-RLAIF [2] 7B 75.1 3.9 61.0 3.3 – –

VideoSAVi-Qwen .5B 59.0 3.4 44.1 2.9 41.3 2.9
VideoSAVi-Qwen 7B 69.2 3.8 54.0 3.2 49.4 3.2
VideoSAVi-Vicuna 7B 76.0 4.1 60.1 3.5 53.1 3.4

Proprietary Model Preference Data

LLaVA-NeXT [30] 7B 75.4 4.0 62.4 3.5 54.4 3.4
LLaVA-HOUND [70] 7B 78.7 4.0 69.0 3.7 60.7 3.5
i-SRT [1] 7B 81.3 4.1 72.8 3.8 62.0 3.5

Table 4. Open-ended QA results on MSVD [8], MSRVTT [60],
and TGIF [27]. VideoSAVi-Vicuna achieves the best performance
among open-source models. All values are in percentages (%). Acc:
Accuracy, Scr: GPT-evaluated quality score (1–5).

excelling in both coarse-grained (e.g., running, cooking) and
fine-grained (e.g., climbing up/down a ladder, specific sports
movements such as dribbling or dunking a basketball) action
recognition. For instance, VideoSAVi-Qwen-7B achieves
83.2% accuracy on action understanding, surpassing the
previous SOTA methods, such as Video-STaR (81.4%) and i-
SRT (80.6%). This suggests that VideoSAVi’s use of “What”
questions enhances its ability to recognize and understand
specific actions within videos. In speed perception, which
includes absolute speed assessment (e.g., detecting slow
motion vs. normal speed) and relative speed comparison
(e.g., comparing velocities of different objects within the
same frame), VideoSAVi reaches 48.4% accuracy, improv-
ing upon the previous baseline of i-SRT (44.7%). This is
significant since speed perception requires strong temporal
reasoning involving both motion detection and accurate as-
sessment of temporal rates both within and across frames.
Additionally, VideoSAVi’s smaller 0.5B model (VideoSAVi-
Qwen-0.5B) achieves an impressive efficiency-performance
trade-off, maintaining 64.2% accuracy in action recognition
and 44.7% in speed assessment while using far fewer param-
eters than existing methods and outperforming 7B models in
overall accuracy.

Multi-choice QA VideoSAVi-Qwen-7B achieves new
SOTA performance on NExTQA (74.1%) and IntentQA
(76.4%), surpassing both proprietary and GPT4-based mod-
els. On the long-video understanding task of EgoSchema,
it reaches 57.2%, competitive with most models, except for
VideoTree’s 66.2% (GPT-4 based). VideoSAVi-Qwen-0.5B
also maintains strong performance, with 57.8% accuracy on
NExTQA and 54.7% on IntentQA. These results corroborate
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with the inclusion of “Why” questions in our question genera-
tion process which significantly improves the model’s intent
understanding capabilities. VideoSAVi-Vicuna, however,
demonstrates lower accuracy due to its reduced instruction
following ability in choosing correct choice out of given
answer choices.

Open-ended QA VideoSAVi-Vicuna-7B achieves strong
performance on MSVD-QA (76.0%) surpassing LLaVA-
NeXT-DPO (75.4%) which uses proprietary models to gen-
erate preference data while also maintaining strong results on
MSRVTT-QA (60.1%) and TGIF-QA (53.1%). VideoSAVi-
Vicuna-0.5B also retains 77.6% of the 7B model’s MSVD-
QA accuracy. VideoSAVi-Vicuna-7B also achieves the high-
est scores (4.1, 3.5, 3.4) in all three benchmarks. However,
like LLaVA-HOUND-DPO [70] and i-SRT [1], the Vicuna
variant produces verbose outputs for this benchmark, and
GPT-based evaluations tend to assign higher scores to such
responses [41].

5. Ablation Studies
We conduct three ablation studies on the TempCompass
benchmark to examine the impact of (1) removing CLIP
filtering, (2) removing caption references during question
generation and evaluation, and (3) removing “How” and
“Why” questions. Table 5 shows the results of these studies.

5.1. Effect of Removing CLIP Filtering
We remove CLIP filtering of preference data and re-evaluate
the models on TempCompass. Removing CLIP filtering
significantly degrades performance: VideoSAVi-Vicuna-7B
drops from an average of 47.7% to 28.7%, VideoSAVi-Qwen-
0.5B from 48.8% to 43.6% (with a directional understanding
drop from 42.7% to 38.4%), and VideoSAVi-Qwen-7B from
54.1% to 49.5%. These results confirm the importance of
CLIP filtering for maintaining video-text alignment and ac-
curate response ranking.

5.2. Effect of Removing Captions
Removing caption references during question generation and
evaluation has varying impacts across models. VideoSAVi-
Vicuna-7B’s performance drops significantly from an av-
erage of 47.7% to 33.6%, with major declines in action
recognition (67.7% → 48.2%) and direction understanding
(41.4% → 27.4%). However, the VideoSAVi-Qwen models
show strong robustness: the 7B variant maintains similar
performance (54.3% vs. 54.1%), and the 0.5B model shows
only a minimal decline (47.7% vs. 48.8%), suggesting that
these models can effectively reason about temporal aspects
even without caption guidance.

5.3. Effect of Removing “How” and “Why”
When restricted to only “What” questions, VideoSAVi-
Vicuna-7B’s performance drops from an average of 47.7% to

Method LLM Act Dir Spd Evt Attr Avg

CLIP Filtering Removed

VideoSAVi-Vicuna 7B 51.7 22.7 17.6 22.6 29.1 28.7
VideoSAVi-Qwen .5B 58.7 38.4 37.8 41.1 42.1 43.6
VideoSAVi-Qwen 7B 75.5 38.6 42.7 45.1 45.8 49.5

Caption Reference Removed

VideoSAVi-Vicuna 7B 48.2 27.4 26.0 29.0 37.2 33.6
VideoSAVi-Qwen .5B 64.3 42.1 43.0 44.0 45.4 47.7
VideoSAVi-Qwen 7B 83.5 43.1 48.5 45.8 50.8 54.3

Only “What” Questions

VideoSAVi-Vicuna 7B 61.7 39.2 39.0 34.3 48.6 44.6
VideoSAVi-Qwen .5B 63.5 41.8 44.1 42.8 46.4 47.7
VideoSAVi-Qwen 7B 83.2 43.0 47.9 46.7 50.4 54.2

Table 5. Ablation study on TempCompass benchmark. We
examined the impact of (1) removing CLIP filtering, (2) removing
caption references during question generation and evaluation, and
(3) removing “How” and “Why” questions. Results are reported
across action (Act), direction (Dir), speed (Spd), event (Evt), and
attribute (Attr) understanding tasks.

44.6%. VideoSAVi-Qwen-0.5B shows minimal degradation
decreasing from 48.8% to 47.7%. Interestingly, VideoSAVi-
Qwen-7B maintains similar performance (54.2% vs 54.1%),
suggesting that “How” and “Why” questions had little effect
on the 7B model.

6. Limitations
While our approach shows considerable promise, it also
presents some areas for improvement: (1) computational de-
mands: experiments required 4 Nvidia A100 GPUs (80GB
each), with one iteration of self-training taking approxi-
mately 5 days; (2) instruction adherence: model responses
tend to become more verbose during DPO alignment, sug-
gesting a balance to be refined between video-text align-
ment and conciseness; and (3) synthetic data quality: self-
generated preferences may occasionally diverge from human
preferences in complex reasoning scenarios. Future work
will focus on enhancing computational efficiency and refin-
ing the balance between visual alignment and instruction-
following capabilities.

7. Conclusion
We present VideoSAVi, a novel self-training framework that
enables video-language models to generate and learn from
their own synthetic preference data without relying on human
annotations or proprietary models. Through CLIP-adjusted
DPO and iterative self-improvement, VideoSAVi achieves
SOTA performance on temporal reasoning and video QA
tasks. Our approach demonstrates that even smaller models
can effectively generate high-quality training data, open-
ing new possibilities for democratizing the development of
Video-LLMs while maintaining strong performance.
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A. Analysis of CLIP-Adjusted DPO
We provide a detailed analysis of the proposed CLIP-
adjusted direct preference optimization (DPO) method. We
aim to show the challenges associated with the introduction
of CLIP-based [42] adjustments on the model’s behavior,
leading to increased response verbosity, decreased instruc-
tion following, and higher supervised fine-tuning (SFT) loss.

A.1. Base DPO Loss Formulation
The standard DPO loss [43] is formulated to optimize a pol-
icy model pθ(y|x) by encouraging it to prefer responses that
are deemed better according to human or model-generated
preferences. The loss is defined as:

LDPO(θ) = − E(x, y+, y−)∼D [log σ (β∆rθ)] , (5)

where ∆rθ = rθ(x, y
+) − rθ(x, y

−), rθ(x, y) =

log pθ(y|x)
pref(y|x) , σ(·) is the sigmoid function, β > 0 is a scaling

parameter, x is the input (video and prompt), and (y+, y−)
are the chosen and rejected responses from dataset D.

The DPO loss encourages the policy model to assign
higher probability to the preferred response compared to the
less preferred one relative to the reference model.

A.2. CLIP-Adjusted DPO Loss
In our CLIP-adjusted DPO, we introduce a per-example sign
coefficient si based on the CLIP similarity scores between
the responses and the video content. Specifically, for each
example i, we compute:

si =

{
+1, if c+i ≥ c−i ,

−1, if c+i < c−i ,
(6)

where
• c+i = CLIP(vi, y+i ) is the CLIP similarity score between

the video vi and the preferred response y+i .
• c−i = CLIP(vi, y−i ) is the CLIP similarity score between

the video vi and the less preferred response y−i .
The adjusted DPO loss becomes:

LCLIP-DPO(θ) = − E(x, y+, y−)∼D [log σ (β si ∆rθ)] . (7)

This adjustment effectively flips the preference direction
in cases where the CLIP similarity suggests that the less
preferred response is more aligned with the video content
than the preferred response.

A.3. Combined Loss Function with SFT Regular-
ization

To balance the optimization between aligning responses with
visual content and maintaining language modeling capabili-
ties, we introduce a combined loss function that includes an
SFT loss term:

LTotal(θ) = αLCLIP-DPO(θ) + γ LSFT(θ), (8)

where
• α > 0 and γ > 0 are weighting factors for the CLIP-DPO

loss and SFT loss, respectively.
• LSFT(θ) is the SFT loss, defined as the negative log-

likelihood of the ground-truth tokens:

LSFT(θ) = −E(x, y)∼DSFT [log pθ(y|x)] , (9)

where DSFT is the SFT dataset containing video-response
(chosen) pairs. We include LSFT as a regularization term to
prevent the model from overly optimizing for CLIP-based
preferences at the cost of coherent language generation,
since DPO alone might lead to unnatural or verbose out-
puts as shown in Figure 4.

A.4. Impact on Model Behavior
The introduction of the CLIP-adjusted DPO loss and its
interaction with the SFT loss have significant implications
for the model’s behavior. We analyze these effects below.

A.4.1. Gradient Analysis
The gradient of the CLIP-adjusted DPO loss with respect to
the model parameters θ is given by:

∇θLCLIP-DPO = −β ED
[
si

(
1− σ

(
β si ∆rθ

))
× ∇θ∆rθ

]
, (10)

where si = −1, the sign of the gradient is reversed com-
pared to the standard DPO loss. This reversal can cause
the model to decrease the difference ∆rθ, effectively en-
couraging the model to assign higher probability to the less
preferred response y− relative to the preferred response y+.
This conflicting signal introduces instability in the optimiza-
tion process.

Effect on Gradient Magnitude. The magnitude of the gra-
dient is modulated by the term (1− σ (β si ∆rθ)). This term
can vary significantly depending on the value of β si ∆rθ.
For large values of |β si ∆rθ|, the sigmoid function saturates,
leading to vanishing gradients. Conversely, for small values,
the gradient magnitude increases, potentially causing abrupt
updates.

A.4.2. Increase in Response Verbosity
The reversal of gradients for examples where si = −1 can
lead the model to hedge its predictions. To accommodate
conflicting optimization signals, the model may increase the
entropy of its output distribution, resulting in more verbose
and less precise responses.

Entropy Increase. The entropy of the policy model’s out-
put distribution is defined as:

H (pθ(y|x)) = −
∑
y

pθ(y|x) log pθ(y|x), (11)

where pθ(y|x) is the conditional probability distribution of
the policy model generating response y given input x. An
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Figure 4. Examples demonstrating increased response verbosity. The model tends to generate overly detailed explanations for even
simple multiple-choice questions. Top: When asked about horse direction change, the model provides an unnecessarily lengthy analysis of
each option. Bottom: For a straightforward question about dogs playing, the response includes excessive behavioral analysis and option
elimination. Red text highlights conclusive statements that could have been given directly (which are incorrect as well).

13



Figure 5. Examples demonstrating decreased instruction following in multiple-choice questions. Left: While VideoSAVi-Qwen
directly answers with the correct option “(A)”, VideoSAVi-Vicuna provides a descriptive explanation without selecting from the given
options. Right: Similarly, VideoSAVi-Vicuna elaborates on the action without explicitly choosing option “(D)” as requested. This behavior
indicates compromised instruction-following capabilities in the Vicuna variant, likely due to conflicting optimization objectives between
CLIP-adjusted DPO and SFT losses.

increase in entropy indicates that the model is less certain
about its outputs, spreading probability mass over a wider
range of possible responses. This behavior can manifest as
longer, more detailed answers that attempt to cover multiple
possible correct responses. Figure 4 shows an example of
this where the responses are verbose and incorrect at the
same time. These observations are in sync with the claims
made in [41] regarding verbosity bias of DPO fine-tuning.

A.4.3. Decrease in Instruction Following
The SFT loss LSFT(θ) encourages the model to generate
responses that are coherent and follow the instructions pro-
vided in the prompts. However, the conflicting optimization
objectives introduced by the CLIP-adjusted DPO loss can im-
pede this goal. Figure 5 shows that VideoSAVi-Vicuna fails
to directly answer multiple-choice questions despite being
explicitly prompted to select an option. This was the reason
for reduced performance of Vicuna variants on multi-choice
QA evaluation in Table 3.

Gradient Conflict. The total gradient is a weighted sum
of the gradients from the CLIP-DPO loss and the SFT loss:

∇θLTotal(θ) = α∇θLCLIP-DPO(θ) + γ∇θLSFT(θ). (12)

When ∇θLCLIP-DPO and ∇θLSFT point in opposing direc-
tions, the net gradient can be diminished, slowing down
learning or causing the model to prioritize one objective over
the other. This conflict can lead to decreased adherence to
instructions, as the model balances between following the
prompt and aligning with the visual content.

A.4.4. Increase in SFT Loss
Due to the gradient conflicts, the SFT loss may not decrease
as expected during training. The model’s capacity to learn
from the SFT data is compromised, resulting in higher SFT

loss values as shown in Figure 6. The SFT loss depends on
the model’s ability to predict the ground-truth tokens given
the prompts. When the model is also being pushed to align
with preferences that may conflict with the SFT data, its
performance on the SFT objective can degrade.

Figure 6. Training dynamics of the SFT loss component. The
graph shows increasing SFT loss over training iterations when
using CLIP-adjusted DPO, indicating the trade-off between visual
alignment and language modeling performance. The higher SFT
loss suggests compromised instruction-following capabilities as the
model optimizes for noisy (model generated) preference data.

A.4.5. Policy Divergence and KL Regularization
The reward function rθ(x, y) involves the log ratio between
the policy model and the reference model. The KL diver-
gence between the two models is given by:

DKL (pθ(y|x) ∥ pref(y|x)) = Ey∼pθ(y|x)

[
log

pθ(y|x)
pref(y|x)

]
. (13)

With the CLIP adjustment, the model may diverge more
rapidly from the reference model, particularly for examples
where si = −1. This divergence can lead to overfitting to the
adjusted preferences, reducing the generalization capabilities
of the model.
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Method LLM Action Direction Speed Event Attribute Average

SigLIP-based Filtering

VideoSAVi-Vicuna 7B 42.5 23.0 20.4 29.4 31.3 29.3
VideoSAVi-Qwen .5B 47.5 41.8 43.0 35.7 46.0 42.8
VideoSAVi-Qwen 7B 83.4 43.3 48.0 47.1 50.6 54.5

Table 6. Ablation study on TempCompass benchmark. We examined the impact of swapping CLIP-based filtering with SigLIP-based
filtering of the preference data. Results are reported across action, direction, speed, event, and attribute understanding tasks.

B. Ablation Study: SigLIP-based Filtering
We investigated the use of SigLIP [67] instead of CLIP for
filtering DPO preference data. When filtering DPO pref-
erences, both CLIP and SigLIP compute similarity scores
between video frames and text pairs, but with crucial dif-
ferences in their architectures and scoring mechanisms. We
define the embedding functions:
• fCLIP : V → R1536 is CLIP’s ViT-L/14 visual encoder
• gCLIP : T → R1536 is CLIP’s text encoder
• fSigLIP : V → R768 is SigLIP’s ViT-B/16 vision trans-

former encoder
• gSigLIP : T → R768 is SigLIP’s text transformer encoder

where V = R224×224×3 is the space of normalized image
frames and T represents tokenized text sequences.
For a video frame sequence {v(t)i }Tt=1 and response pair
(y+i , y

−
i ), CLIP computes raw cosine similarity:

cCLIP
i =

fCLIP(vi)
⊤gCLIP(yi)

∥fCLIP(vi)∥∥gCLIP(yi)∥
∈ [−1, 1] (14)

While SigLIP applies an additional sigmoid transformation:

cSigLIP
i = σ(

fSigLIP(vi)
⊤gSigLIP(yi)

∥fSigLIP(vi)∥∥gSigLIP(yi)∥
) ∈ (0, 1) (15)

For a batch of frames B = {v(t)i }|B|
t=1, we compute batch-

wise similarities:

c+B =
1

|B|
∑
v∈B

ci(v, y
+
i ), c−B =

1

|B|
∑
v∈B

ci(v, y
−
i ) (16)

The final filtering decision aggregates across all batches:

si =

{
+1, if 1

N

∑N
j=1 c

+
Bj

≥ 1
N

∑N
j=1 c

−
Bj

,

−1, otherwise
(17)

where N is the total number of batches processed.
As shown in Table 6, this leads to notable drop in per-

formance on the TempCompass benchmark [33] compared
to Table 2, which used CLIP-based filtering: VideoSAVi-
Vicuna (7B) dropped to 29.3% vs 47.7% average perfor-
mance, and VideoSAVi-Qwen (.5B) saw a decrease to 42.8%
vs 48.8% average performance. We hypothetize the perfor-
mance degradation due to:

Similarity Range Compression: The sigmoid transforma-
tion in SigLIP compresses the similarity range:

σ : [−∞,∞]→ (0, 1) vs cos : Rd × Rd → [−1, 1] (18)

This makes it harder to distinguish between strongly aligned
pairs, particularly impacting models with less capacity.

Non-linear Thresholding: The sigmoid’s non-linearity
affects the relative differences between similarity scores:

∂σ(x)

∂x
= σ(x)(1− σ(x)) (19)

making the filtering decisions more sensitive to small varia-
tions in the raw similarity scores.

However, the larger 7B Qwen model’s comparable per-
formance between both filtering methods suggests sufficient
capacity to produce consistent embeddings despite these
transformations.

C. Filtering of Preference Data is Necessary
Figure 7, provides critical evidence for why CLIP filter-
ing is essential in the VideoSAVi pipeline. The examples
demonstrate instances where the model’s preference selec-
tion, can diverge from visual ground truth. When evaluating
response pairs, the model assigns preference scores based
on semantic coherence and general knowledge, which can
lead to visually inconsistent choices. In the macaron ex-
ample, despite assigning a higher preference score (4.0) to
the “four macarons” response, this preference contradicts
the visual evidence. CLIP filtering serves as an independent
vision-language verification mechanism, correctly identify-
ing that the alternative “six macarons” response (scored 3.5)
better aligns with the actual content. Similar behavior is
observed in the architectural style assessment, where the
model’s preference for “flat roofs” (score 4.0) is corrected by
CLIP filtering in favor of the visually accurate “traditional
with snow-covered roofs” description. These cases highlight
that model-based preference selection would generate noisy
preference data for DPO and direct visual grounding through
CLIP filtering is crucial for maintaining factual consistency.
For evaluating individual responses, we employ a structured
evaluation template shown in Figure 8, which ensures sys-
tematic scoring across multiple criteria including relevance,
accuracy, temporal grounding, clarity, and groundedness.
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Figure 7. Examples demonstrating the necessity of CLIP filtering in preference selection. The figure shows cases where model-assigned
scores (Chosen/Rejected scores) diverge from actual video content, but CLIP filtering correctly identifies the more visually grounded
response. Left: While the model prefers the “four macarons” response, CLIP filtering identifies that “six macarons” better matches the
visual content. Right: Similarly, CLIP filtering corrects the model’s preference for “flat roofs” in favor of the more accurate “traditional
with snow-covered roofs” description. These examples highlight how CLIP filtering helps maintain vision-text alignment in the preference
selection process.

Figure 8. Prompt template used for evaluating generated responses.
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Figure 9. Qualitative example showing VideoSAVI’s video understanding capabilities on the Intent-QA [24] benchmark. VideoSAVi
correctly identifies the natural demonstration method (“opening his own mouth”), while earlier models show varying interpretations from
incorrect object identification (LLaVA-NeXT-DPO’s [30] “milk bottle”) to imprecise action descriptions (i-SRT [1] and LLaVA-HOUND-
DPO’s [70] “using hands”). This comparison demonstrates VideoSAVi’s ability to capture fine-grained actions in videos.
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Figure 10. Qualitative examples showing VideoSAVi’s video understanding capabilities on the NExT-QA [59] benchmark. While
LLaVA-NeXT-DPO [30] incorrectly identifies “left hands” for cup handling, both LLaVA-HOUND-DPO [70] and i-SRT [1] add unnecessary
details to the description about “laps gently.” In contrast, VideoSAVi provides precise and factual observations of the shared drinking
patterns, accurately describing the sequence without adding unobserved details.
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