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Abstract

Video-language models (Video-LLMs) excel at understand-
ing video content but struggle with spatial relationships,
temporal ordering, and cross-frame continuity. To address
these limitations, we introduce VideoPASTA (Preference
Alignment with Spatio-Temporal-Cross Frame Adversaries),
a framework that enhances Video-LLMs through targeted
preference optimization. VideoPASTA trains models to
distinguish accurate video representations from carefully
generated adversarial examples that deliberately violate
spatial, temporal, or cross-frame relations. By apply-
ing Direct Preference Optimization to just 7,020 pref-
erence pairs, VideoPASTA learns robust representations
that capture fine-grained spatial relationships and long-
range temporal dynamics. Experiments on standard video
benchmarks show significant relative performance gains
of 3.05% on VideoMME, 1.97% on NeXTQA, and 1.31%
on LongVideoBench, over the baseline Qwen2.5-VL model.
These results demonstrate that targeted alignment, rather
than massive pretraining or architectural modifications, ef-
fectively addresses core video-language challenges. Notably,
VideoPASTA achieves these improvements without human
annotation or captioning, relying on just 32-frame sampling,
compared to the 96-frame, multi-GPU setups of prior work.
This efficiency makes our approach a scalable, plug-and-
play solution that seamlessly integrates with existing models
while preserving their capabilities.

1. Introduction

Recent advances in video large language models (Video-
LLMs) have enabled efficient understanding and reasoning
about videos [3, 7, 26, 30, 54, 55, 65]. These models capture
both fine-grained details and broader contextual informa-
tion in videos, achieving high performance in tasks such
as captioning and question answering [6, 32, 41]. However,
these models typically require large, high-quality annotated
datasets and substantial computational resources for training.
Recent work has explored instruction tuning as a strategy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of Preference Pairs (in thousands)

65.0

65.2

65.4

65.6

65.8

66.0

66.2

66.4

M
VB

en
ch

 S
co

re
 (%

)

7k pairs

10k pairs

17k pairs

VideoPASTA
TPO
LLaVA-Hound-DPO
Qwen2.5-VL Baseline

Figure 1. With just 7k preference pairs, VideoPASTA surpasses
the Qwen2.5-VL [3] baseline, LLaVA-Hound [70] and TPO [28]
on MVBench, demonstrating that targeted adversarial alignment
can outperform larger but less focused datasets.

to reduce data dependency [7, 30, 31, 52, 73]. Instruction
tuning refers to fine-tuning a pre-trained model on a curated
dataset of instruction-response pairs, which allows the model
to follow human directives. While recent efforts have suc-
cessfully generated large instruction datasets through mod-
els like GPT-4V [73], the improvements in Video-LLMs
achieved through training on these datasets have been lim-
ited. These models often show persistent failure modes in
understanding and reasoning about videos, including spatial
misalignment [9], temporal incoherence [9], and cross-frame
disconnections [15, 20, 24, 35]. Addressing these alignment
challenges through human annotation is prohibitively expen-
sive, as it requires annotators to carefully identify and label
examples that demonstrate proper grounding, temporal co-
herence, and factual consistency. This suggests that merely
scaling up models and data may not be the most effective
approach. Instead, the key challenge lies in ensuring faithful
alignment between model responses and video content.

Recent work has explored video-language alignment [1,
28, 70] using Direct Preference Optimization (DPO) [39].
However, current approaches focus on collecting more pref-
erence data rather than addressing the core weaknesses
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of Video-LLMs, generating data that reinforce existing
strengths instead of challenging limitations. Furthermore,
these methods rely on proprietary models for generating
samples [70] or require video captioning [28], limiting their
scalability.

This raises an important research question: How can
we align Video-LLMs to understand spatial, temporal, and
cross-frame relationships without relying on human annota-
tions, captions, or proprietary models while ensuring com-
putational efficiency? To address this challenge, we intro-
duce VideoPASTA (Preference Alignment with Spatio-
Temporal-Cross Frame Adversaries), a novel framework
that enforces accurate video-language alignment through
targeted preference pairs. Our approach contrasts preferred
responses with carefully generated adversarial responses that
capture three common failure modes in video understanding:
(1) spatial misalignment, where responses misrepresent ob-
ject relationships and interactions within local frames, (2)
temporal incoherence, where responses violate the natural
progression of events, and (3) cross-frame disconnection,
where responses incorrectly link information across distant
frames. VideoPASTA leverages DPO and structured prefer-
ence pairs to address failure modes in video understanding.
In summary, our contributions are as follows:

1. We present VideoPASTA, a novel DPO-based framework
for training video-language models, which addresses
three key issues: spatial misalignment, temporal incoher-
ence, and cross-frame disconnection while eliminating
the need for human annotation, caption data, or propri-
etary models.

2. We set a new efficiency standard for preference optimiza-
tion in video-language models, achieving substantial im-
provements with just 7,020 preference pairs compared
to much larger instruction tuning datasets (1.3M) and
preference datasets (17k) used in prior work.

3. We demonstrate through extensive evaluation across eight
video understanding benchmarks that our targeted align-
ment approach leads to significant relative improvements,
including +3.05% on VideoMME, +1.97% on NeXTQA,
+1.69% on MVBench, and +1.31% on LongVideoBench
compared to baselines.

2. Related Work

2.1. Video-LLMs
Recent advancements have led to the development of nu-
merous Video-LLMs with impressive capabilities [7, 25,
26, 29, 42, 44, 51, 52, 55, 63, 68, 69, 73]. However, com-
prehensive evaluations [13, 33, 76] reveal persistent chal-
lenges in three critical areas. First, temporal reasoning re-
mains a significant hurdle, particularly for long videos. Re-
searchers have attempted to address this through increased
context length [32, 42, 43, 69], compression techniques [22,

23, 29, 34, 53], and training-free approaches [18, 59, 62].
While these approaches improve token efficiency, they often
fall short in enhancing fundamental temporal understand-
ing. More specialized methods [6, 16, 41, 50, 57] directly
target temporal reasoning but require substantial computa-
tional resources. Second, spatial misalignment remains a
frequent challenge, as models struggle with object local-
ization and spatial relationships, leading to incorrect posi-
tioning and poor occlusion handling [4, 40]. Third, cross-
frame disconnection often results in failures in maintaining
object continuity and narrative coherence across video seg-
ments [19, 48]. Most existing methods primarily address one
of these dimensions or rely heavily on large-scale instruction-
tuning datasets, which fail to resolve the core alignment
challenges [5, 30, 51, 52, 71, 73].

VideoPASTA addresses all three failure modes through
DPO-based training on structured preference pairs. Rather
than addressing isolated weaknesses, we generate preference
pairs that challenge the model’s understanding across tem-
poral, spatial, and cross-frame dimensions. This approach
enables VideoPASTA to achieve more comprehensive video-
language alignment compared to methods that rely on con-
ventional instruction tuning.

2.2. Reward Modeling for Video-LLMs

Reward modeling is essential for aligning VLMs with hu-
man preferences by grounding their responses in an accurate
visual context. Recent work has proposed a factually aug-
mented RLHF approach that integrates image captions and
verified data into the reward function to reduce hallucina-
tions and improve output reliability [47]. Other approaches
exploit AI-generated feedback via reinforcement learning
to guide video–text alignment, thereby reducing reliance on
expensive human annotations [2]. Complementary strate-
gies in reward modeling for VLMs include the conditional
preference optimization framework in MDPO [49], the cal-
ibrated self-rewarding approach that integrates visual con-
straints [77], and fine-grained reward modeling via dense
sentence-level feedback in ViGoR [60]. In contrast, we em-
ploy DPO [39] to directly optimize preference learning, an
approach adopted by recent Video-LLMs such as LLaVA-
Hound-DPO [70] and i-SRT [1], which relies on proprietary
models to generate samples and requires 17k preference
pairs.

While previous approaches focus primarily on accumulat-
ing diverse preference samples, VideoPASTA fundamentally
reimagines preference data generation through systematic
targeting of failure modes. By generating preference pairs
that deliberately challenge failure modes, we shift towards a
preference quality over quantity approach. This reduces the
required preference pairs and creates a more robust learning
signal that simultaneously improves video understanding
across all three critical dimensions.
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Video-LLM

Figure 2. Overview of VideoPASTA . For each aligned query-response pair, we generate three types of targeted adversarial examples:
(1) Spatial Mislignment that deliberately confuse object positions and relations (e.g., misplacing the plants relative to the person), (2)
Temporal Incoherence that violate event sequences (e.g., claiming simultaneous actions that occur sequentially), and (3) Cross-Frame
Disconnection that make invalid connections across distant frames (e.g., incorrectly describing location changes). These pairs are filtered
using Qwen2.5-32B [61] to ensure quality, then used to train the model through DPO, maximizing the likelihood gap between preferred and
adversarial responses. → trainable, → frozen.

2.3. Self-Training

To address the challenge of large, annotated datasets, self-
training methods [12, 21, 45, 46, 78] have been proposed to
use unlabeled or weakly annotated data to improve model
performance. However, current methods frequently depend
on expensive GPT APIs [45] or require ground truth feed-
back [78], which limits scalability and hinders comprehen-
sive alignment. While LLaVA-Hound-DPO [70] introduced
preference optimization for video understanding, it operates
primarily at the text level without directly targeting visual
alignment failures and requires 17k preference pairs gener-
ated using proprietary models. Similarly, Temporal Prefer-
ence Optimization (TPO) [28] improves temporal grounding
by contrasting predictions from full videos with those from
subsampled segments but addresses only temporal aspects
while neglecting spatial relationships and cross-frame rea-
soning. Moreover, TPO still requires video captioning as
an intermediate step and uses up to 10k preference pairs,

introducing additional computational overhead.
What is missing from current approaches is a unified

framework that efficiently targets all three critical dimen-
sions of video understanding without requiring proprietary
models, large preference datasets, or intermediate caption-
ing steps. VideoPASTA fills this gap by employing prefer-
ence pairs that challenge and refine a model’s understanding,
achieving superior alignment with just 7k carefully designed
preference pairs.

3. VideoPASTA

VideoPASTA is a DPO-based framework that helps video-
language models stay closely aligned with video content
using structured preference optimization. Formally, our ap-
proach leverages a preference dataset D defined as follows:

D = {(V, q, r+, r−)}, (1)
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where V represents the input video, q denotes the query
regarding the video content, r+ is the preferred response
accurately aligned with the video, and r− is the adversarial
response deliberately generated to introduce misalignment.
Our approach addresses three key failure modes: spatial,
temporal, and cross-frame misalignments by generating tar-
geted adversarial examples for each. Specifically, we create
one accurate (“aligned”) example that correctly describes a
scene, along with three misleading (“adversarial”) examples,
each designed to break a different aspect of alignment. By
training on these contrastive pairs using DPO, the model
learns to better distinguish between preferred responses and
adversarial responses. As shown in Figure 2, this enables
VideoPASTA to achieve more robust and comprehensive
alignment across all aspects of video understanding. We
focus on the following three failure modes of video under-
standing:

(1) Spatial Misalignment. Models often struggle with spa-
tial relationships over short frame intervals. For example, a
model may incorrectly describe a pedestrian as “crossing in
front of” a moving vehicle when they are actually walking
behind it, a critical spatial error that only becomes apparent
through temporal context. Achieving accurate alignment
requires understanding object interactions within local tem-
poral contexts.

(2) Temporal Incoherence. Video frames capture dy-
namic events. In a cooking demonstration, a model might
mistakenly describe a chef dicing vegetables, heating oil, and
adding ingredients in a different order. To avoid temporal
confusion, models must preserve the correct order of actions
and their causal relationships.

(3) Cross-frame Disconnection. Distant frames provide
context for continuity or setting changes. However, mod-
els often fail to link events, such as a character entering a
building and later appearing in an office, treating them as un-
related scenes instead of a coherent progression. This results
in incorrect generalizations and overlooked state changes,
underscoring the need for robust cross-frame tracking.

To address each dimension, we generate adversarial re-
sponses that intentionally violate spatial, temporal, or cross-
frame constraints. By contrasting these adversarial responses
with preferred responses using DPO, the model is guided to
learn precise alignment for each aspect of video-language
understanding.

3.1. Spatial Misalignment

Spatial relationships, such as object positions, occlusions,
depth order, and relative arrangements, are crucial for video
understanding. To address these factors, we create targeted
preference pairs that focus on spatial alignment.

Query Generation. We use InternVL2.5-38B [7] to au-
tomatically generate a variety of spatial queries (prompt
provided in Appendix, Figure 10). These queries cover
key aspects of spatial understanding, including occlusion
(e.g., “Which object is partially hidden behind another?”),
depth perception (e.g., “Which item appears closest to the
camera?”), relative positioning (e.g., “How many objects
occupy the left vs. right third of the frame?”), foreground-
background relationships, and frame layout (e.g., “Which
objects are at the top versus bottom edge?”).

Preferred Response Generation. To capture fine-grained
spatial details, we sample the input video at 32 fps. The
baseline Qwen2.5-VL [3] model is then explicitly prompted
to provide coherent and detailed descriptions of object inter-
actions, depth cues, and spatial configurations across neigh-
boring frames. This ensures that the generated preferred
responses accurately reflect the true spatial relationships in
the video.

Adversarial Response Generation. We generate challeng-
ing examples by undersampling videos at 1 fps and modify-
ing prompts to induce spatial errors. For occlusion queries,
adversarial prompts instruct the baseline model to describe
all objects as fully visible, even when occluded (e.g., stating
“the person is fully visible” when partially hidden behind
a counter). For depth-related queries, prompts require the
model to reason that all objects are equidistant, disregard-
ing clear perspective cues (e.g., claiming “the cup and the
mountain are at the same distance from the camera”). These
intentionally flawed responses act as adversaries to test and
refine precise spatial reasoning.

3.2. Temporal Incoherence
Accurately capturing event sequences, action transitions, and
causal relationships is crucial for robust video understanding.
To evaluate and enhance temporal reasoning, we create pref-
erence pairs that focus on the model’s temporal coherence.

Query Generation. We use InternVL2.5-38B to generate
queries that focus on key aspects of temporal understanding
(prompt provided in Appendix, Figure 11). These include
event ordering (e.g.,“Which major action occurs first, and
which follows?”), action boundaries (e.g., “Does the per-
son complete one task before starting the next?”), transition
points (e.g., “When does the subject switch activities?”),
causality (e.g., “Is the second event a direct result of the
first?”), and concurrent actions (e.g., “Are there any simulta-
neous events, and how do they overlap?”).

Preferred Response Generation. To obtain temporally
coherent responses, we process the video at its native frame
rate, ensuring dense temporal sampling. The baseline model
is prompted to describe the precise sequence of events, ef-
fectively capturing transitions, dependencies, and causal
relationships.
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Adversarial Response Generation. We create adversarial
examples by undersampling the videos at 1 fps and utilizing
prompts that induce temporal distortions. One adversarial
prompt instructs the baseline model to describe sequential
actions as occurring simultaneously (e.g., “the chef chop-
ping vegetables, heating the pan, and plating the dish all
at the same time”). Another prompts the model to ignore
action transitions, merging distinct events into a continuous
sequence (e.g., describing “a continuous swimming motion”
when the video shows separate diving, swimming, and ex-
iting phases). These flawed responses act as adversaries to
test and refine precise temporal reasoning.

3.3. Cross-frame Disconnection
Robust video understanding requires capturing long-range
cross-frame relationships, such as object continuity, charac-
ter persistence, setting changes, and narrative progression
across distant frames. To achieve this, we create targeted
preference pairs that focus specifically on these cross-frame
dependencies.

Query Generation. We use InternVL2.5-38B to automati-
cally generate queries that evaluate various aspects of cross-
frame understanding (prompt provided in Appendix, Fig-
ure 12). For instance, queries ask whether the same object
appears in both the opening and closing scenes, whether char-
acters present early in the video reappear, whether the setting
evolves over time, whether actions repeat across distant seg-
ments, and how early events foreshadow later developments.

Preferred Response Generation. To capture coherent
long-range dependencies, we uniformly sample the entire
video sequence at its native frame rate. The baseline model
is prompted to describe consistent object transformations,
character developments, setting changes, and narrative con-
nections, ensuring that preferred responses accurately re-
flect the continuity and narrative progression throughout the
video.

Adversarial Response Generation. We generate challeng-
ing examples by undersampling the video at 1 fps by using
prompts that disrupt cross-frame connections. For object
continuity, adversarial prompts instruct the baseline model
to treat identical objects in different scenes as unrelated (e.g.,
describing “a new red car appears” when it is the same vehi-
cle shown from a different angle). For character persistence,
prompts require the model to treat similar-looking characters
as entirely distinct (e.g., stating “a different person enters
the office” when it is clearly the same individual from ear-
lier). These flawed responses act as adversaries to test and
strengthen robust, long-range video-language alignment.

3.4. Preference Data Filtering
We generate three adversarial examples for each failure
mode (spatial, temporal, cross-frame) per query and use

Qwen2.5-32B [61] as a lightweight verification step to en-
sure the adversarial examples are genuinely incorrect. We
prompt Qwen2.5-32B with a textual comparison task to ver-
ify that each adversarial example introduces a deliberate mis-
alignment rather than simply rephrasing the correct answer
(prompt provided in Appendix, Figure 13). Adversaries that
are too similar to the aligned samples or lack clear contradic-
tions are discarded and regenerated. Similarly, we perform a
“sanity check” on preferred responses to ensure they correctly
align with the queries without errors. This filtering process
creates preference pairs that accurately represent the targeted
failure modes, enabling more precise alignment during DPO.

3.5. Training Process
VideoPASTA leverages structured preference pairs to ad-
dress distinct failure modes in video understanding through
DPO. We begin by partitioning the preference dataset D =
{(V, q, r+, r−)} into three subsets: Ds, Dt, and Dc, corre-
sponding to spatial, temporal, and cross-frame alignment,
respectively. Each data point in the preference dataset is
a tuple (V, q, r+, r−), where V represents the input video,
q denotes the query regarding the video content, r+ is the
preferred response, and r− is the adversarial response.

For a video-language model Mθ, we define the DPO loss
for a single preference pair as:

∆(V, q, r+, r−) = log pθ(r
+ | V, q)− log pθ(r

− | V, q),

LDPO(V, q, r
+, r−) = − log σ

(
λ∆(V, q, r+, r−)

)
,

(2)
where σ is the sigmoid function, λ is a scaling factor, and
the term inside the brackets represents the log probability
difference between the preferred and adversarial responses.
We then compute the DPO loss separately for each subset of
preference pairs and weight them by α, β, and γ to reflect
the relative importance of spatial, temporal, and cross-frame
alignment. The overall training objective is:

L = αEDs

[
LDPO

]
+ β EDt

[
LDPO

]
+ γ EDc

[
LDPO

]
. (3)

This formulation allows us to adjust the model’s focus
on different aspects of video-language alignment during
training.

4. Experiments and Evaluation
For training, we sample 3,000 videos from ActivityNet [64].
Our structured adversarial sampling pipeline produces
90, 000 preference pairs which after filtering are reduced
to 7, 020 (additional details included in Appendix §A.3).
We fine-tune Qwen2.5-VL [3] with the SWIFT [75] frame-
work for efficient adaptation. Training and evaluation are
performed on two NVIDIA L40S GPUs (48GB), with a
maximum frame limit of 32 to avoid CUDA OOM errors.
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Model TempCompass PerceptionTest NeXTQA MVBench Vinoground MLVU LongVideoBench VideoMME

(1) Baseline Models
Qwen2.5-VL [3] 71.7 68.6 75.8 65.2 27.9 68.7 60.7 62.2
+ SFT 71.8 69.1 77.2 65.5 28.0 68.8 60.9 62.5
+ Hound-DPO [70] 70.3 67.6 76.1 65.7 27.8 66.4 56.3 63.2
+ TPO [28] 71.5 69.0 77.6 65.3 28.1 68.9 59.2 64.2

(2) State-of-the-Art Models
VideoLLaMA2† [8] 43.4 51.4 - 54.6 22.1 35.5 - 47.9
Kangaroo† [32] - - - 61.0 – 61.0 54.8 56.0
LLaVA-NeXT-Video† [71] 53.0 48.8 53.5 53.1 17.8 - 49.1 46.5
LongVA† [69] - - - - – 58.8 51.3 52.6
LLaVA-NeXT-Interleave [26] 54.1 51.2 67.0 46.5 15.2 52.5 44.8 48.3
InternVL2.5 [7] 68.3 62.2 77.0 69.8 29.4 59.5 52.9 57.9
Qwen2-VL [52] 68.9 62.3 75.7 64.9 24.8 57.5 55.6 55.3
LLaVA-OneVision [25] 64.5 57.1 79.3 56.7 25.0 64.9 56.3 58.2
LLaVA-Video [73] 66.4 67.9 74.2 58.6 24.3 66.5 58.2 62.4

(3) Preference-Optimized Models
LLaVA-Hound-DPO [70] 55.5 45.1 61.6 36.6 23.8 41.1 36.7 34.2
i-SRT [1] 56.0 47.0 63.0 36.3 23.7 39.9 38.2 34.7
LLaVA-Video-TPO [28] 66.6 66.3 77.8 56.7 24.0 66.3 58.3 62.4

VideoPASTA 72.3+0.84% 69.4+1.17% 77.3+1.97% 66.3+1.69% 28.3+1.43% 69.2+0.73% 61.5+1.31% 64.1+3.05%

Table 1. Comprehensive evaluation of VideoPASTA against leading video understanding models. We compare VideoPASTA with
(1) baseline models built on Qwen2.5-VL, (2) current state-of-the-art models, and (3) models enhanced through preference optimization.
The best scores are in bold, and the second-best scores are underlined. For VideoPASTA, relative performance improvements over the
Qwen2.5-VL foundation model are indicated as subscripts. All results, except those marked with †, are reproduced using LMMs-Eval [67].

We use LoRA [17] with α = β = 8 and a DPO scaling
factor of β = 0.1. The model converges in one epoch,
requiring just 6 hours of training. Evaluation is done us-
ing LMMs-Eval [67] for a fair comparison to prior work.
Additional experiments on data quality (§A.2), preference
learning efficiency (§A.2.2), dataset samples (§A.3.2), quali-
tative samples (§A.4) and prompt design (§A.5) are provided
in appendix.

We evaluate on general video understanding benchmarks:
TempCompass [33] (temporal understanding), Perception-
Test [37] (visual perception), NeXTQA [58] (composi-
tional reasoning), MVBench [27] (multi-task reasoning),
and Vinoground [66] (dense temporal reasoning). For long-
form evaluation, we use LongVideoBench [56] (hour-long
videos), MLVU [76] (multi-task, 3-minute to 2-hour videos),
and VideoMME [13] (6 visual domains, 30 subfields, 11-
second to 1 hour videos).

4.1. Results
We compare VideoPASTA with (1) baseline models built on
Qwen2.5-VL [3], (2) current state-of-the-art models, and (3)
models enhanced through preference optimization. Table 1
presents the evaluation results.

Gains Over Foundation Models. Compared to its back-
bone model, Qwen2.5-VL, VideoPASTA achieves signifi-
cant relative improvements on key benchmarks: VideoMME
(+3.05%), Vinoground (+1.43%), PerceptionTest (+1.17%),

and LongVideoBench (+1.31%). These gains reflect en-
hanced temporal reasoning, fine-grained visual understand-
ing, and improved temporal coherence in long-form video
analysis. For baseline models built on Qwen2.5-VL, we first
evaluate supervised fine-tuning (SFT) using aligned exam-
ples (i.e., queries and preferred responses) but observe only
marginal improvements. This indicates that aligned exam-
ples alone are insufficient, and models need to learn from
mistakes through adversarial examples. Hound-DPO [70]
uses proprietary models to generate samples and requires 17k
pairs, while TPO [28] focuses only on temporal alignment
with 10k pairs and needs captioning data. In comparison,
VideoPASTA performs better with just 7k pairs, showing
that carefully chosen adversarial examples can achieve more
effective alignment than larger, less focused datasets.
Comparison with State-of-the-Art. VideoPASTA outper-
forms state-of-the-art models on four of eight video under-
standing benchmarks. Key improvements include a 5.85%
relative gain over InternVL2.5 in temporal reasoning on
TempCompass (72.3%) and a 2.2% increase on Perception-
Test (69.4%) over LLaVA-Video, which was instruction-
tuned on 1.3M SFT pairs. Our method also shows signifi-
cant improvements on long-form video benchmarks, includ-
ing LongVideoBench (61.5%, +5.67% vs. LLaVA-Video),
MLVU (69.2%, +4.06%), and VideoMME (64.1%, +2.72%).
Outperforming Preference-Optimized Models. Com-
pared to preference-optimized models, VideoPASTA out-
performs LLaVA-Hound-DPO [70] and i-SRT [1] on all
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Query: What is the spatial relationship between the person and the aircraft during takeoff?

Qwen2.5-VL: The person is leaving the aircraft by jumping from the door.

VideoPASTA : : The person is clinging to the aircraft by gripping the doorframe, with the runway below them.

Query: What action occurs after the green icing has been applied as a base layer but before the white icing?

Qwen2.5-VL: After green icing is applied, the next action is to smooth out the icing with white icing.

VideoPASTA : After adding icing to base layer, the next action performed is to add additional details to the green icing.

Query: How does the initial disclaimer about physics being gross relate to the illustrations of stick figures under a rain cloud, one confused and another sweating, 

and the final depiction of distress?

Qwen2.5-VL: The disclaimer is unrelated to the illustrations. The scenes are disconnected, showing no coherent narrative or progression.

VideoPASTA : The disclaimer sets up an explanation of unpleasant physical phenomena. The illustrations show a progression from confusion to sweating due

to heat stress, culminating in distress. This implies the narrative explains the severe effects of heat exposure.

Figure 3. Qualitative comparison of VideoPASTA against baseline Qwen2.5-VL [3]. The examples demonstrate how our method
improves different aspects of video understanding: (1) Spatial reasoning: Correctly identifies the spatial relationship between person
and aircraft (clinging to doorframe vs. incorrectly stating “leaving”), (2) Temporal understanding: Accurately captures the sequence of
decorative actions (adding details to base layer vs. incorrectly jumping to white icing), (3) Cross-frame reasoning: Successfully connects
thematic progression across frames (heat stress narrative) while the baseline model fails to establish relationships between scenes.
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Figure 4. DPO training converges on well-grounded responses,
with chosen rewards rising, rejected rewards falling, and overall
reward accuracy stabilizing over iterations.

eight benchmarks and outperforms LLaVA-Video-TPO [28]
on seven out of eight benchmarks by a significant margin.
These improvements highlight that our multi-dimensional ap-
proach, which tackles critical failure modes in Video-LLMs,
addresses fundamental challenges in prior work while requir-
ing minimal resources.

4.2. Ablation Studies

DPO Training Dynamics. To illustrate how our DPO-
based preference optimization evolves over time, we plot
key reward metrics in Figure 4. Specifically, we track (1)

reward accuracy, which measures how often the model ranks
a preferred response higher than its adversarial counterpart,
(2) reward for chosen responses, and (3) reward for rejected
responses. The model quickly learns to distinguish correct
from incorrect interpretations, as indicated by an early rise in
reward accuracy. Over successive iterations, accuracy stabi-
lizes around 70–75%, suggesting that the model consistently
favors preferred responses over adversarial ones. Meanwhile,
the increasing gap between chosen and rejected rewards con-
firms that structured adversarial sampling reinforces clear
preference boundaries. This behavior highlights the effec-
tiveness of our DPO-based approach in aligning the model
with desired video-language interpretations.

Efficiency of Preference Data Scaling. Figure 5 shows
how performance scales with the amount of preference data.
Even with just 1,400 pairs, VideoPASTA surpasses Qwen2.5-
VL on MLVU, VideoMME, and LongVideoBench. Perfor-
mance improves steadily across all benchmarks as more
preference pairs are added, with noticeable gains observed
between 3k and 4k pairs, and the upward trend continuing
through 7k pairs. This steady improvement across diverse
benchmarks indicates that structured adversarial sampling
effectively improves video understanding without requiring
excessive amounts of preference data.

Effectiveness of Targeted Adversarial Sampling. Table 2
demonstrates that each failure mode in our adversarial sam-
pling pipeline contributes distinct advantages. Training ex-
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Figure 5. Impact of preference data size on model performance. We evaluate our model’s performance across three benchmarks while
varying the number of preference pairs used for training.

Model Temporal Spatial Action Object

Qwen2.5-VL [3] 35.0 63.6 54.0 55.9

w/ Temporal Only 44.0 67.1 49.2 51.3
w/ Spatial Only 40.1 74.8 55.0 55.4
w/ Cross-Frame Only 43.3 66.8 54.9 57.2

Full Model 45.2+29.14% 78.6+23.58% 56.1+3.89% 58.4+4.47%

Table 2. Effect of each targeted failure mode on VideoMME.
Subscripts show percentage increases from Qwen2.5-VL.

Model MLVU LongVideoBench VideoMME

VideoLLaVA [30] 47.3 39.1 39.9
+ VideoPASTA 50.2+6.13% 42.4+8.44% 40.5+1.50%

LLaVA-NeXT-Interleave [26] 52.5 44.8 48.3
+ VideoPASTA 54.0+2.85% 45.5+1.56% 49.9+3.31%

LLaVA-OneVision [25] 64.9 56.3 58.2
+ VideoPASTA 66.3+2.16% 56.8+0.89% 60.9+4.64%

Table 3. Model-agnostic improvements from VideoPASTA.

clusively with temporal samples significantly improves tem-
poral reasoning (+25.71%) but minimally impacts spatial or
object reasoning. Similarly, spatial-only training boosts spa-
tial reasoning the most (+17.61%), while cross-frame sam-
ples enhance both object (+2.32%) and temporal (+23.71%)
reasoning. Combining all three modes delivers the best over-
all performance, with significant improvements in temporal
(+29.14%), spatial (+23.58%), action (+3.89%), and object
(+4.47%) reasoning. These results confirm that adversarial
sampling across multiple failure modes provides comple-
mentary benefits, leading to more holistic video-language
alignment than focusing on each mode individually.
Model-Agnostic Improvements. Table 3 shows that
VideoPASTA consistently improves performance across
different base models. We apply our framework to Vide-
oLLaVA [30], LLaVA-NeXT-Interleave [26], and LLaVA-
OneVision [25]. In each case, VideoPASTA enhances bench-
mark scores on MLVU, LongVideoBench, and VideoMME,
confirming that our structured adversarial sampling strategy
is effective regardless of the underlying model. These results
highlight the robustness of VideoPASTA as a model-agnostic

Adversarial Examples per MLVU LongVideoBench VideoMME
Aligned Sample

1 67.5 58.8 62.3
2 68.4 60.2 63.2
3 (Ours) 69.2 61.5 64.1
4 68.9 61.2 63.8
5 68.7 61.0 63.6

Table 4. Effect of the number of adversarial examples per
aligned sample. Performance peaks at 3 adversarial examples,
matching our three targeted failure modes (spatial, temporal, and
cross-frame misalignment).

Frame Sampling MLVU LongVideoBench VideoMME

32:32 68.7 60.8 62.4
16:16 68.6 60.7 62.3

32:8 69.0 61.2 63.5
16:4 68.9 61.0 63.2

32:1 (Ours) 69.2 61.5 64.1
16:1 69.0 61.3 63.7

Table 5. Effect of frame sampling rates. Best results in bold.

approach for improving video-language alignment.

Number of Adversarial Examples per Aligned Sample.
Table 4 shows that performance is optimal with three adver-
sarial examples corresponding to our three targeted failure
modes. Using fewer examples leaves certain aspects of video
understanding insufficiently challenged, while more exam-
ples lead to diminishing returns. This confirms that pairing
each preferred response with exactly three adversarial re-
sponses, one for each failure mode, best reinforces alignment
across spatial, temporal, and cross-frame reasoning.

Frame Sampling. Our analysis of sampling rates (Table 5)
shows that using uniformly dense sampling for both aligned
and adversarial examples lowers performance as models
struggle to detect subtle alignment errors. The optimal con-
figuration (32:1) strikes a balance: dense aligned sampling
captures temporal details, while sparse adversarial sampling
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Model Spatial Misalignment Temporal Incoherence Cross-Frame Disconnection

Adv. Question (%) Adv. Options (%) Adv. Question (%) Adv. Options (%) Adv. Question (%) Adv. Options (%)

Qwen2.5-VL [3] 38.4 42.6 35.2 39.5 31.8 36.7
LLaVA-Hound-DPO [70] 39.2 43.1 36.5 39.8 31.9 37.2
TPO [28] 41.3 44.5 48.2 51.4 32.4 37.5

VideoPASTA 46.8+21.88% 51.1+19.95% 49.7+41.19% 52.8+33.67% 33.1+4.09% 38.2+4.09%

Table 6. Performance on Adversarial QA Samples Across Different Failure Modes. Adv. Question: Adversarial questions where no
correct answer exists (higher rejection rate is better). Adv. Options: Adversarial options where “None of the Above” is the correct answer
(higher NOTA selection rate is better). Each cell shows the percentage of correctly handled adversarial samples. Subscripts show percentage
increases from Qwen2.5-VL.

Model MLVU LongVideoBench VideoMME

Qwen2-VL (2B) 51.3 46.6 50.1
+ VideoPASTA 51.9+1.16% 47.7+2.36% 51.2+2.19%
Qwen2-VL (7B) 57.5 55.6 55.3

Qwen2.5-VL (3B) 65.9 55.8 61.2
+ VideoPASTA 66.7+1.21% 56.0+0.35% 61.8+0.98%
Qwen2.5-VL (7B) 68.7 60.7 62.2

Table 7. Preference Learning vs. Model Scaling.

creates clear misalignment patterns. This result is consis-
tent across benchmarks, highlighting the importance of a
well-designed sampling strategy in model training.

Robustness Against Adversarial Inputs. To evaluate
VideoPASTA’s robustness against failure modes, we tested
100 videos from LLaVA-Video [72] using GPT-4o [36]
(prompt provided in Appendix, Figure 14) to generate both
adversarial questions (unanswerable queries) and adversarial
options (where “None of the Above” is correct) per fail-
ure mode. As shown in Table 6, VideoPASTA significantly
outperforms baselines across all categories, with the most
substantial gains in temporal reasoning (+41.19%). This
improved robustness stems directly from our training ap-
proach—by exposing the model to targeted adversarial ex-
amples during preference optimization, VideoPASTA learns
to recognize and reject similar misleading inputs during infer-
ence. Unlike generic preference optimization, our structured
adversarial sampling creates a more discriminative model
capable of identifying spatial inconsistencies, temporal con-
tradictions, and cross-frame disconnections. GPT-4o was
also used to evaluate model responses (prompt provided
in Appendix, Figure 15), specifically identifying rejection
phrases like “cannot be answered” and “insufficient informa-
tion” when models correctly recognized adversarial inputs.

Preference Learning vs. Model Scaling. Table 7 presents
the comparative analysis between preference learning and
model scaling. VideoPASTA demonstrates consistent per-
formance improvements across model sizes, with relative
gains of 1.16-2.36% on smaller models (2B parameters)
and 0.35-1.21% on larger models (3B parameters). This

experiment provides two critical insights: (1) preference-
based alignment offers an orthogonal optimization path to
parameter scaling, and (2) our targeted adversarial sampling
effectively improves alignment regardless of model capacity.
Notably, applying VideoPASTA to Qwen2.5-VL (3B) yields
performance comparable to vanilla Qwen2.5-VL (7B) on
VideoMME, achieving 99.4% of the larger model’s perfor-
mance with only 42.9% of the parameters. These results
validate that addressing core failure modes through struc-
tured preference optimization provides an efficient alterna-
tive to computational-intensive scaling approaches, particu-
larly beneficial in resource-constrained environments.

5. Conclusion

We introduce VideoPASTA, a novel DPO-based framework
that improves video-language models through structured
adversarial sampling targeting spatial, temporal, and cross-
frame misalignments. Our approach sets a new efficiency
standard, achieving significant performance gains across
eight benchmarks with just 7,020 preference pairs without
the need for human supervision or video captioning. This
model-agnostic method operates efficiently with 32-frame
sampling, demonstrating that targeted adversarial examples
enable more effective learning than generic instruction tun-
ing. While individual failure modes lead to improvements in
their respective dimensions, combining all three results in
significant gains across all aspects of video understanding.
Our method challenges the reliance on massive datasets and
paves the way for resource-efficient video-language align-
ment. Future research could focus on evaluation metrics for
aligned models, providing clearer insights into their reason-
ing process.
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A. Appendix
A.1. Reward Modeling for VLMs
Several recent works have proposed alternative strategies
for reward modeling in VLMs. Deng et al. [11] introduce a
judge-free self-improvement framework that leverages con-
trolled hallucination and lightweight contrastive encoders
to generate high-quality preference pairs, reducing depen-
dence on large-scale model judges. Cui et al. [10] recast
reward modeling as a next-token prediction problem by
exploiting fine-grained visual signals, which allows token-
level reward feedback for more precise model alignment.
Similarly, Fu et al. [14] develop a token-level detective re-
ward model that provides detailed, interpretable rewards
for each token, thereby facilitating effective self-correction
and hallucination detection. Pi et al. [38] address pretrain-
ing biases in multimodal models by bootstrapping adversar-
ial responses, using both image distortion and LLM bias
injection, to suppress false correlations from the pretrain-
ing phase. Extending these ideas to the robotics domain,
Zhang et al. [74] propose GRAPE, which aligns robot poli-
cies through trajectory-level reward modeling. Together,
these approaches offer complementary insights into fine-
grained, efficient, and scalable reward modeling for VLMs.
In contrast, our work leverages structured adversarial sam-
pling to generate synthetic preference data that specifically
targets common failure modes in video-language alignment.
This targeted strategy enables our model to refine spatial,
temporal, and object-level representations more effectively,
delivering robust multi-dimensional video understanding
without the need for costly human annotations or reliance on
external proprietary models.

A.2. Quality Analysis of Preference Data
A.2.1. Failure Mode Targeting Accuracy
To assess how well our adversarial examples target their in-
tended failure modes, we conduct a systematic evaluation
using GPT-4o as an independent judge. We randomly sample
200 preference pairs from our training dataset, each contain-
ing an aligned query-response pair and three corresponding
adversarial examples (one targeting each failure mode). For
each adversarial example, we prompt GPT-4o to determine
whether it correctly induces the specific failure mode it is
designed to target without revealing the intended category to
prevent bias.

The results, presented in Table 8, demonstrate strong
targeting precision across all three categories. Spatial mis-
alignment examples achieve the highest targeting accuracy
at 96.1%, indicating our approach excels at generating ex-
amples that specifically challenge spatial relationship under-
standing. Temporal incoherence examples show strong per-
formance at 92.4%, while cross-frame disconnection exam-
ples reach 88.3% accuracy. The slightly lower performance

Failure Mode Targeting Accuracy (%)

Spatial Misalignment 96.1
Temporal Incoherence 92.4
Cross-Frame Disconnection 88.3

Average 92.3

Table 8. Failure Mode Targeting Accuracy by Category

in cross-frame cases likely reflects the inherent complex-
ity of maintaining coherent object continuity across distant
frames. The prompt is provided in Figure 16.

A.2.2. Preference Optimization Efficiency
Figures 6 and 7 present a comprehensive analysis of prefer-
ence learning efficiency across methods, revealing several
key insights into the relationship between data quantity, qual-
ity, and performance gains.
Consistent Efficiency Across Benchmarks. Across all
benchmarks, VideoPASTA consistently demonstrates supe-
rior data efficiency, achieving comparable or better perfor-
mance than alternative methods while using significantly
fewer preference pairs. This efficiency is particularly evident
in temporal understanding benchmarks like TempCompass,
where VideoPASTA reaches 72.3% with just 7k pairs, out-
performing TPO (71.5% with 10k pairs) by a substantial
margin. Similarly, on spatial understanding benchmarks like
PerceptionTest, VideoPASTA achieves 69.4% with 7k pairs,
effectively matching TPO’s 69.0% performance at 10k pairs.
Information Gain Quantification. To precisely measure
learning efficiency, we calculate the information gain G,
defined as:

Gmodel =
Sfinal − Sbaseline

n/1000
(4)

where Sfinal is the model’s performance score after training,
Sbaseline is the baseline performance, and n is the number of
preference pairs used. This metric quantifies performance
improvement per thousand training examples.

On VideoMME, VideoPASTA achieves GVideoPASTA =
0.27 points of improvement per 1k pairs, compared to TPO’s
GTPO = 0.20 and Hound-DPO’s GHound-DPO = 0.06, repre-
senting 1.4× and 4.5× higher efficiency, respectively. Even
higher differences emerge on MVBench (GVideoPASTA =
0.16 points per 1k pairs, 16× more efficient than TPO’s
GTPO = 0.01 and 5.3× more efficient than Hound-DPO’s
GHound-DPO = 0.03) and NeXTQA (GVideoPASTA = 0.21
points per 1k pairs, 10.2× more efficient than TPO’s GTPO =
0.18 and 12.1× more than Hound-DPO’s GHound-DPO =
0.02). These substantial efficiency gaps demonstrate that
structured adversarial examples targeting specific failure
modes provide significantly more informative learning sig-
nals than generic preference data.
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Figure 6. Performance vs. Number of Preference Pairs across six benchmarks. VideoPASTA achieves superior results with only 7k pairs
compared to TPO [28] (10k pairs) and and Hound-DPO [70] (17k pairs). Note the consistent upward trajectory for VideoPASTA vs. the
performance degradation of Hound-DPO on MLVU and LongVideoBench at higher pair counts, highlighting the importance of targeted
adversarial examples over mere data quantity.
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Figure 7. Information gain analysis across three representative benchmarks. Each bar represents performance improvement per 1K
preference pairs, calculated as (final score − baseline score)/num pairs in thousands. VideoPASTA demonstrates dramatically
higher learning efficiency compared to competing methods, up to 16× more efficient than TPO on MVBench and 12.1× more efficient than
Hound-DPO on NeXTQA highlighting the impact of targeted adversarial examples in creating informationally dense learning signals.

Stability of Learning Trajectories. Interestingly, we ob-
serve divergent trends for LLaVA-Hound-DPO across sev-
eral benchmarks, where performance actually degrades at
higher example counts (particularly evident in MLVU and
LongVideoBench). This suggests that preference pairs gen-
erated using proprietary models without explicit targeting of
failure modes may introduce noise that compromises align-
ment as training progresses. In contrast, VideoPASTA’s tar-
geted approach maintains consistent improvement trajecto-
ries, confirming that structuring adversarial examples around

specific weaknesses yields more robust optimization.

Quality Over Quantity. While our previous ablation study
(Figure 5) demonstrates that VideoPASTA benefits from ad-
ditional data within its structured framework, these results
highlight the critical distinction between data quantity and
quality. Even when all methods benefit from more examples,
the rate of improvement per example for VideoPASTA signif-
icantly outpaces alternatives, allowing it to achieve superior
performance with 30% fewer examples than TPO and 59%
fewer than LLaVA-Hound-DPO. This efficiency shows that
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systematically targeting failure modes through structured
adversarial examples creates a more effective learning signal
than generic preference data, regardless of quantity.

A.3. Dataset Overview
A.3.1. Dataset Statistics
Starting with 3000 videos from ActivityNet [64], we system-
atically generate preference pairs through structured adver-
sarial sampling. For each video V , we generate 10 queries
Q targeting different aspects of video understanding. Each
query q ∈ Q is paired with three targeted adversarial re-
sponses rspatial, rtemporal, and rcrossframe, representing spatial,
temporal, and cross-frame failure modes, respectively. Theo-
retically, this setup yields:

Npotential = |V | × |Q| × |R−|
= 3000× 10× 3 = 90, 000

(5)

potential preference pairs, where |V | is the number of videos,
|Q| is the number of queries per video, and |R−| is the
number of adversarial responses per query.

However, to ensure dataset quality, we employ rigor-
ous filtering using Qwen2.5-32B [61] verification using the
prompt template given in Figure 13. Each preference pair
must satisfy three criteria:
1. The preferred response should accurately reflect the video

content relative to the query.
2. The adversarial response must introduce a clear, deliber-

ate misalignment.
3. The misalignment must be specific to its targeted failure

mode.
This verification process retains approximately 7.8% of

the potential pairs:

Nfinal = Npotential×rretention ≈ 90 000×0.078 ≈ 7, 020, (6)

where rretention is the retention rate after quality filtering.
This filtered dataset provides a balanced representation

across failure modes while maintaining high standards for
preference pair quality. The strict filtering ensures that each
adversarial example presents a genuine challenge for video-
language alignment rather than simple errors or rephrasing.

A.3.2. Dataset Samples
Figure 8 illustrates key examples from our preference dataset
that demonstrate how VideoPASTA targets specific failure
modes in video-language understanding. These examples
were carefully curated to challenge different aspects of video
comprehension while maintaining clear distinctions between
preferred and dispreferred responses.
Spatial Misalignment. The boat counting example demon-
strates our approach to spatial reasoning. While the dispre-
ferred response completely negates the presence of obvious
visual elements (“no boats”), the challenge lies not in the

simple presence/absence but in the precise spatial relation-
ships (“positioned near the shore, with one slightly further
out”). This forces the model to develop fine-grained spatial
awareness rather than just object detection capabilities.
Temporal Incoherence. Two examples highlight our ap-
proach to temporal understanding. The cooking sequence
tests precise transitional timing between steps, where the dis-
preferred response artificially collapses distinct preparation
phases into simultaneous actions. Similarly, the equipment
preparation example challenges the model’s ability to dis-
tinguish between sequential and concurrent actions. These
adversarial samples are particularly effective because they
present plausible but incorrect temporal relationships.
Cross-Frame Disconnection. The scene transition exam-
ple illustrates how we assess long-range comprehension. The
dispreferred response mistakenly interprets superficial visual
changes, such as a close-up of a face, as significant narrative
shifts, whereas the preferred response accurately identifies
meaningful context transitions, like an external threat lead-
ing to an internal response. This evaluates the model’s ability
to track narrative progression across distant frames.

Each example undergoes thorough validation using
Qwen2.5-32B [61] to ensure that dispreferred responses re-
flect genuine misunderstandings rather than simple errors or
rephrasings. This systematic approach to adversarial exam-
ple generation reinforces robust video-language alignment
across multiple dimensions of video understanding.

A.4. Qualitative Examples
We present several representative examples that demonstrate
how VideoPASTA improves video understanding across var-
ious scenarios. Figure 9 illustrates three key aspects of our
model’s capabilities in handling complex video content.

First, in the camera advertisement sequence, while
Qwen2.5-VL [3] fails to recognize the narrative structure and
describes it as “unrelated clips” VideoPASTA successfully
captures the purposeful progression from technical camera
operation to creative photography. This demonstrates how
our cross-frame adversarial sampling helps the model de-
velop a more coherent understanding of extended narratives.
Next, the animated sequence with Bugs Bunny showcases
VideoPASTA’s enhanced ability to track emotional progres-
sion. Instead of merely detecting immediate reactions, our
model recognizes the escalation from initial irritation to
visible anger and, ultimately, to explosive rage. This im-
provement stems from our temporal incoherence adversarial
sampling, which teaches the model to distinguish between
simultaneous and sequential emotional states. The cooking
demonstration particularly highlights the benefits of our local
spatial alignment strategy. While the baseline model con-
fuses the order of preparation steps, VideoPASTA correctly
identifies the precise sequence of cleaning, coating, and fry-
ing the chilies. This accuracy in tracking procedural steps is
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Query: How many boats are present in the water?

Adversarial Response: There are no boats present in this video.

Preferred Response: There are three boats visible in the water. They are positioned near the shore, with one slightly further out than the others.

Query: At what point in the sequence does the person first add a slice of lemon to the drink?

Adversarial Response: The person first adds a slice of lemon to the drink at the very beginning of the sequence.

Preferred Response: The person first adds a slice of lemon to the drink after pouring the liquid and before stirring.

Query: Which scene indicates a shift from an external threat to an internal response, and how is this transition shown?

Adversarial Response: The scene with the woman talking on a phone indicates a shift from the close-up of a character's face.

Preferred Response: The scene with the armed individuals inside a vehicle indicates a shift from the external threat of the aircraft flying over the landscape.

Query: How does the <Region-Level Triplet Loss= in Contributions relate to the <Self-Supervised Losses=?

Adversarial Response: The Region-Level Triplet Loss is unrelated to Self-Supervised Losses. It only serves classification purposes.

Preferred Response: The loss separates background and non-background features, which is the key part of Self-Supervised Losses. This ensures the model

learns meaningful representations for nuclei segmentation.

Query: At what point does the rider complete the indoor equipment preparation relative to the outdoor riding activities?

Adversarial Response: The rider is adjusting equipment while simultaneously riding outdoors, with the indoor preparation happening at the same time.

Preferred Response: The indoor equipment preparation is completed first, shown by the tack adjustment being finished before any outdoor movement begins.

Query: What is the precise transitional timing between active heat application to the onions and their incorporation with the other prepped ingredients relative to 

egg addition?

Adversarial Response: The raw onions are mixed directly with the raw eggs while still cold, with simultaneous heating occurring as the herbs are being chopped, 

allowing all ingredients to cook together from their raw state.

Preferred Response: The onions are cooked until translucent first, then combined with the prepped herbs, and only after this integration are the beaten eggs

introduced to the mixture.

Figure 8. Examples from our preference dataset demonstrating diverse failure modes targeted by VideoPASTA. Each row shows a
video sequence with its corresponding query and preferred and adversarial responses. The adversarial samples cover spatial misalignment
(counting objects in scenes), temporal incoherence (order of actions in cooking/preparation), and cross-frame disconnection (scene transitions
and contextual shifts). Adversarial responses deliberately introduce specific misalignments by either negating obvious visual elements,
confusing sequential ordering, or collapsing distinct temporal phases into simultaneous events, while preferred responses maintain accurate
spatial-temporal alignment with the video content.

crucial for practical applications like instructional video un-
derstanding. The competition example shows how our model

can parse complex sequences of physical and emotional re-
actions, maintaining temporal coherence even in dynamic
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Query: What is the narrative progression of this video, and what key transformation occurs between the initial indoor camera moments and the final outdoor 

scenes?

Qwen2.5VL: This is a travel documentary showing unrelated clips of someone looking at a camera, randomly followed by tourist spots and tunnel visits.

VideoPASTA : This is a Nikon camera advertisement that shows the journey from photographer to photograph, beginning with camera handling moments that

result into the resulting landscape and adventure photography.

Query: What is the progression of emotional states and actions shown in the muscular character's response to Bugs Bunny's basketball challenge?

Qwen2.5VL: The character becomes enraged immediately after seeing Bugs Bunny, then starts grunting while exercising with weights, followed by his jumping

attempt, with the steam effects appearing in the video as a result of his physical workout.

VideoPASTA : The character first shows irritation during the basketball game, which escalates into visible anger with grunting, then transitions to explosive

rage, and finally concludes in an airborne leap of fury after Bugs Bunny's taunt.

Query: In what order are the green chilies prepared and coated before frying?

Qwen2.5VL: The chilies are first dipped in egg wash, then slit and cleaned, followed by coating in breadcrumbs, and then dipped in flour before being fried 

until golden brown.

VideoPASTA : The chilies are first cleaned and slit, then coated in the flour mixture, followed by dipping in the egg wash, and finally covered in breadcrumbs

before being deep fried until golden brown.

Query: What is the sequence of the athlete's emotional and physical reactions from the moment he completes his jump until the final result?

Qwen2.5VL: After landing, he immediately jumps up celebrating, then waits for the measurement, followed by lying down in the sand to rest, before finally

showing disappointment at his result.

VideoPASTA : The athlete first lies motionless in the sand pit, then slowly sits up, followed by a knowing smile at his performance, which is confirmed by his

celebration when seeing the 8.58m measurement displayed.

Query: What visual changes are shown in the sky during the total solar eclipse footage?

Qwen2.5VL: The sun is suddenly blocked by the moon, showing only a bright ring around the edges, while the sky remains partially lit throughout the event.

VideoPASTA : The bright sun is gradually covered by the moon, creating a dark circular shadow with a glowing white ring around it, and stars become visible in

the darkened sky.

Query: How does the girl assist the boy in levitating the feather, and what evidence supports this assistance?

Qwen2.5VL: The girl assists the boy by simply watching him attempt the spell. There is no clear evidence of her providing specific guidance or help with the wand 

movement.

VideoPASTA : The girl assists the boy by demonstrating the correct wand movement. Evidence includes her focused expression and the feather's subsequent

levitation after her guidance.

Figure 9. Qualitative comparison of VideoPASTA against Qwen2.5-VL across key failure modes. The examples demonstrate how our
method addresses three critical challenges in video understanding: (1) Spatial misalignment (correctly describing the gradual progression
of a solar eclipse and identifying spatial evidence in the Harry Potter scene), (2) Temporal incoherence (accurately capturing sequential
emotional progressions in the athlete’s reactions and proper cooking preparation steps), and (3) Cross-frame disconnection (maintaining
narrative coherence from camera handling to photography outcomes and character emotions). Qwen2.5-VL responses exhibit typical failure
patterns: misrepresenting spatial relationships, incorrectly sequencing temporal events, and failing to establish meaningful connections
across frames. VideoPASTA responses demonstrate robust video-language alignment across all three dimensions.

scenes. The eclipse footage example reveals VideoPASTA’s
ability to describe gradual visual transformations accurately,

avoiding the baseline’s tendency to oversimplify temporal
transitions. Finally, the instruction scene identifying magic
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demonstrates our model’s capability to establish clear causal
relationships between actions and their outcomes, supported
by specific visual evidence.

These qualitative results align with our quantitative find-
ings, showing that VideoPASTA’s structured approach to ad-
versarial sampling leads to more precise and accurate video
understanding across multiple dimensions. The improve-
ments are especially evident in scenarios requiring temporal
coherence, causal reasoning, and the integration of informa-
tion across extended sequences. The results validate that our
adversarial generation approach produces highly targeted
examples that specifically challenge the intended aspects of
video understanding, creating a focused and efficient learn-
ing signal for the model during preference optimization.

A.5. Prompt Templates
The effectiveness of VideoPASTA depends heavily on the
careful design of prompts that elicit targeted behaviors from
generative models. Our prompt approach focuses on creating
a framework that enables the consistent generation of high-
quality preference pairs. Rather than using generic prompts
that could lead to superficial or inconsistent responses, we
develop a hierarchical strategy with explicit constraints and
clear objectives. Each template (Figures 10–13) serves a
distinct purpose in our pipeline while sharing a common
structure that ensures consistency. The spatial misalignment
template emphasizes physical relations that remain constant
within local temporal windows. The temporal incoherence
template focuses on capturing dynamic changes while main-
taining causality. The cross-frame disconnection template
bridges distant temporal connections without losing local
context. Finally, the preference data filtering template acts
as a quality control mechanism, ensuring that our gener-
ated pairs maintain sufficient contrast while avoiding trivial
differences. A key novelty in our method is the explicit
incorporation of failure modes into the prompt design it-
self. Rather than hoping that models will naturally generate
useful adversarial examples, we directly encode common
pitfalls and misunderstandings into our adversarial prompt
variants. The templates are designed to be model-agnostic,
allowing them to work with different foundation models
while maintaining consistent output quality.
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Spatial Misalignment Prompt

You have a single video input. We want to test the model’s spatial reasoning according to the following guidelines:
1. Aligned Query Generation:

• Leverage world principles for spatial reasoning to produce 10 queries covering:
– Occlusion (e.g., “Which object is partially hidden behind another?”)
– Depth perception (e.g., “Which item appears closest to the camera?”)
– Relative positioning (“How many objects occupy the left vs. right third of the frame?”)
– Foreground-background distinctions
– Overall frame layout (top vs. bottom edges, etc.)

2. Adversarial Query Generation:
• For each query, create an adversarial version.
• Here, the video will be undersampled at 1 fps.
• The adversarial query should actively induce spatial errors.
• Example prompts:

– If the query is about occlusion, force the model to claim everything is fully visible
– if the query is about depth, insist all objects are equidistant

Hence, generate:
• “Straightforward Spatial Questions”: 10 questions (as if asked under the normal sampling scenario)
• “Adversarial Variants”: 3 matching adversarial instructions (3 per query) that lead the model to produce mis-

aligned/spatially flawed responses.

Figure 10. Prompt template for generating aligned and adversarial spatial queries.

Temporal Incoherence Prompt

You have a single video input. We want to test the model’s temporal reasoning according to the following guidelines:
1. Aligned Query Generation:

• Leverage world principles for temporal reasoning ability on long videos to produce 10 queries covering:
– Event ordering (e.g., “Which major action occurs first, and which follows?”)
– Action boundaries (e.g., “Does the person finish one task before starting the next?”)
– Transition points (e.g., “When does the subject switch activities?”)
– Causality (e.g., “Is the second event a direct result of the first?”)
– Concurrent actions (e.g., “Are there any simultaneous events, and how do they overlap?”)

2. Adversarial Query Generation:
• For each query, create an adversarial version.
• Here, the video will be undersampled to induce temporal confusion.
• The adversarial query should actively misrepresent event order, action boundaries, or causal links.
• Example prompts:

– Claim all actions occur at once, ignoring clear time gaps.
– Collapse multiple sequential events into a single continuous action.

Hence, generate:
• “Straightforward Temporal Questions”: 10 questions (as if asked under dense sampling and normal temporal clarity)
• “Adversarial Variants”: 3 matching adversarial instructions (3 per query) that lead the model to produce temporally

flawed or misaligned responses.

Figure 11. Prompt template for generating aligned and adversarial temporal queries.
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Cross-Frame Disconnection Prompt

You have a single video input. We want to test the model’s cross-frame (long-range) understanding according to the
following guidelines:
1. Aligned Query Generation:

• Please produce 10 queries covering:
– Object continuity (e.g., does the same object appear in the opening and closing scenes?)
– Character persistence (e.g., which participants return in later segments, and are they consistent with earlier

roles?)
– Setting evolution (e.g., does the location or environment change over time?)
– Repeated actions (e.g., are certain actions performed in distant parts of the video, creating a parallel?)
– Foreshadowing (e.g., do early events hint at outcomes shown near the end?)

2. Adversarial Query Generation:
• For each query, create an adversarial version.
• Deliberately break cross-frame connections by forcing the model to ignore continuity or treat identical ob-

jects/characters as unrelated.
• Example prompts:

– Insist that objects recurring in different scenes are completely different
– Claim that characters present at both the start and end have no connection

Hence, generate:
• “Straightforward Cross-Frame Questions”: 10 questions (as if the model respects full continuity across frames)
• “Adversarial Variants”: 3 matching adversarial instructions (3 per query) that lead the model to produce disjointed or

inconsistent responses across frames.

Figure 12. Prompt template for generating aligned and adversarial queries focusing on cross-frame video understanding.

Preference Data Filtering Prompt

You have a single video input and a set of four responses for each query:
1. One preferred response that is claimed to be well-aligned with the video content.
2. Three adversarial responses, each intentionally introducing spatial, temporal, or cross-frame errors.
The goal is to validate that:
• The preferred response truly aligns with the query (no unintended contradictions or inaccuracies).
• Each adversarial response introduces a clear misalignment without merely restating or slightly rephrasing the

preferred.
For each query and its four responses:
1. Sanity-check the preferred response.

• Confirm that it accurately reflects the video’s content in relation to the query.
• If any errors or contradictions are detected, discard them.

2. Examine each adversarial response.
• Identify whether it deliberately contradicts or distorts the query/video content (e.g., reversed sequence, false

spatial claims).
• If it is too similar to the preferred response or fails to demonstrate a clear misalignment, discard it.

Figure 13. Prompt template for validating one preferred and three adversarial responses to ensure robust preference pairs.
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Adversarial QA Generation Prompt

You are tasked with generating adversarial video question-answering examples to test video language models’
robustness. Based on the provided video, create:
1. Adversarial Questions:

• Generate exactly 1 question per failure mode that cannot be reasonably answered from the video content.
• These should appear legitimate but contain logical impossibilities or request information that is explicitly not

present.
• Target the following specific failure modes:

(a) Spatial Misalignment: Request object relationships that don’t exist (e.g., “How many people are standing
behind the blue car?” when no blue car exists).

(b) Temporal Incoherence: Ask about event sequences that violate the timeline (e.g., “What happens after the
person leaves the room?” when no one leaves).

(c) Cross-Frame Disconnection: Request connections between unrelated frames (e.g., “How does the opening
scene connect to the dancing sequence?” when no dancing occurs).

2. Adversarial Options:
• Create exactly 1 multiple-choice question per failure mode where all provided options are incorrect.
• Questions should appear legitimate but all options should be misleading.
• Include 4 plausible but incorrect options for each question.
• The correct answer should always be “None of the Above” (not included in the options).
• Target the same three failure modes as above.

Format each output as:
• Adversarial Question [Spatial Misalignment]: [Question text].
• Adversarial Question [Temporal Incoherence]: [Question text].
• Adversarial Question [Cross-Frame Disconnection]: [Question text].
• Adversarial Options [Spatial Misalignment]:

Question: [Question text].
Options:
A. [Option 1].
B. [Option 2].
C. [Option 3].
D. [Option 4].
Correct Answer: None of the Above.

• Adversarial Options [Temporal Incoherence]:
Question: [Question text].
Options:
A. [Option 1].
B. [Option 2].
C. [Option 3].
D. [Option 4].
Correct Answer: None of the Above.

• Adversarial Options [Cross-Frame Disconnection]:
Question: [Question text].
Options:
A. [Option 1].
B. [Option 2].
C. [Option 3].
D. [Option 4].
Correct Answer: None of the Above.

Figure 14. Prompt template for generating adversarial questions and options across different failure modes.
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Adversarial Question Evaluation Prompt

You are an expert evaluator for video question-answering systems. Your task is to determine whether a model correctly
identifies unanswerable questions about a video.
Input:
1. Video context (description provided).
2. Adversarial question (deliberately unanswerable).
3. Model response to the question.
Evaluation criteria:
1. A correct response must identify that the question cannot be answered from the video.
2. Look for specific rejection patterns:

(a) Explicit rejection phrases: “cannot be answered,” “not possible to determine,” “not shown in the video.”
(b) Identification of missing elements: “no such [object/action] appears,” “insufficient information.”
(c) Recognition of logical impossibility: “the premise of the question is incorrect,” “this scenario does not occur.”

3. Incorrect responses attempt to answer the question by:
(a) Hallucinating non-existent objects, actions, or relationships.
(b) Making definitive statements about information not present in the video.
(c) Failing to identify the adversarial nature of the question.

Output format:
1. Judgment: [CORRECT/INCORRECT].
2. Reasoning: Brief justification for your evaluation (1-2 sentences).
3. Rejection Keywords Identified: List specific rejection phrases used by the model.
Provide a binary decision (CORRECT/INCORRECT) based strictly on whether the model appropriately identified the
question as unanswerable.

Figure 15. Prompt template for evaluating model responses to adversarial questions.
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Adversarial Example Evaluation Prompt

Task: Evaluate whether the provided adversarial example correctly targets its intended failure mode in video under-
standing.
Query: [Original question asked about the video]
Preferred Response: [The correct/preferred response to the query]
Adversarial Example: [The adversarial example to be evaluated]
Claimed Failure Mode: [One of: “Spatial Misalignment”, “Temporal Incoherence”, or “Cross-Frame Disconnection”]
Failure Mode Definitions:
• Spatial Misalignment: Incorrectly describing spatial relations, object positions, occlusion patterns, depth, or relative

positioning within a single frame.
• Temporal Incoherence: Violating the natural ordering of events, describing sequential actions as simultaneous,

merging distinct events, or misordering the sequence of activities shown in the video.
• Cross-Frame Disconnection: Breaking object persistence across frames, describing the same object as different

entities across scenes, failing to maintain character/object consistency, or incorrectly describing changes between
distant frames.

Evaluation Instructions:
1. Carefully analyze the adversarial example in relation to the preferred response.
2. Determine if the adversarial example genuinely induces the claimed failure mode.
3. Your evaluation should be based solely on the definitions provided above.
4. Provide a binary judgment: “Yes” if the adversarial example correctly targets the claimed failure mode, “No” if it

does not.
5. Briefly explain your reasoning (2-3 sentences).
Output Format:

Judgment: [Yes/No]
Reasoning: [Your brief explanation]

Figure 16. Prompt used for evaluating whether adversarial examples correctly target their claimed failure modes.
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