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Abstract. With the Rise of Adversarial Machine Learning and increas-
ingly robust adversarial attacks, the security of applications utilizing
the power of Machine Learning has been questioned. Over the past few
years, applications of Deep Learning using Deep Neural Networks(DNN)
in several fields including Medical Diagnosis, Security Systems, Virtual
Assistants, etc. have become extremely commonplace, and hence become
more exposed and susceptible to attack. In this paper, we present a novel
study analyzing the weaknesses in the security of deep learning systems.
We propose ’Kryptonite’, an adversarial attack on images. We explicitly
extract the Region of Interest (RoI) for the images and use it to add im-
perceptible adversarial perturbations to images to fool the DNN. We test
our attack on several DNN’s and compare our results with state of the art
adversarial attacks like Fast Gradient Sign Method (FGSM), DeepFool
(DF), Momentum Iterative Fast Gradient Sign Method (MIFGSM), and
Projected Gradient Descent (PGD). The results obtained by us cause
a maximum drop in network accuracy while yielding minimum possible
perturbation and in considerably less amount of time per sample. We
thoroughly evaluate our attack against three adversarial defence tech-
niques and the promising results showcase the efficacy of our attack.

Keywords: Adversarial Machine Learning · Adversarial Attack · Image
Classification.

1 Introduction

Significant progress in the field of artificial intelligence has caused its use to be
almost ubiquitous. From security and safety systems to autonomous cars and
health care systems, incredible strides have been made to create efficient neural
nets, however, they remain constantly vulnerable to adversarial attacks. Even
though certain object detectors, classifiers, etc., have reached near human accu-
racy, it has been found that they can be easily fooled by small, almost unnotice-
able modifications in images. As our reliance on artificial intelligence systems
increases, the possible impact of their failure also increases tremendously. We
need to ensure that these networks work in the most proper manner. New and
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more advanced attacks, where imperceptible perturbations are being added to
disrupt the working of these networks are being made, against which existing de-
fences are rendered useless. Hence, analysing every possible weakness in networks
that make them susceptible to attack, is the need of the hour.

Let us consider image specific tasks like image classification, object detection,
etc. To accomplish these tasks, neural networks try to identify features charac-
teristic to particular classes in the training set to best determine the result. An
ideal adversarial attack is of course one that causes effective misclassification
with minimum distortion.

When a human attempts to classify objects in an image, their attention is
inevitably drawn to the main region of interest, the object itself [1]. It stands to
reason, that modifying this object may cause ambiguity in analysing the image.
We use this same reasoning in the adversarial attack we present here.

In this paper, we emphasize more on medical datasets. Most medical datasets
including MRIs, X-rays, etc. all contain a very specific, well-defined region of
interest that can be analysed to detect and classify ailments. It has also been
found that medical datasets are more vulnerable to adversarial attacks [2]. The
inspiration for this attack is possible unexplored vulnerability of perturbations
in a region of interest, since most adversarial attacks are fairly antagonistic to
it. Medical datasets were hence chosen for experimentation of the attack for two
reasons. The first reason for doing so is to demonstrate threats on a real life
application of deep learning. The second reason is that because the region of
interest here can be easily extracted, monitored, and modified.

In this attack, we aim to monitor and encourage changes especially in the
region of interest of the image in order to constrain the noise as much as possible
to a particular area of the image. In order to prevent excessive changes in pixel
values in a specific area, the perturbations are constrained. In most cases, this
method effectively manages to fool the classifier with the addition of minimum
noise. This attack hides in plain sight, and infected pixels cannot be easily iden-
tified, unlike other constricted attacks that use adversarial patches, which make
it obvious to viewers that an image is adulterated. We also find that attacking
this region of interest mitigates the effectiveness of state of the art defences, as
compared to their effect on other attacks.

To summarise the contribution to research presented in this paper:

– We propose a highly efficient and accurate, three-step RoI extraction algo-
rithm built upon Otsu’s method of image thresholding, image dilation using
predefined kernel and finally extract RoI using the contour of lesion/tumor
found using Topological Structural Analysis.

– We propose Kryptonite, a white-box, non-targeted adversarial attack, that
exploits a proposed area of weakness.

– We compare our proposed attack with the existing state of the art attacks
based on Receiver Operating Characteristic Curve (ROC), and perturbation
size.

– We analyse the comparison of the impact of various state of the art defences
on the proposed attack with other attacks.
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– We aim to show the advantages of localising an attack in an image.

The remainder of the paper is structured as follows: Section 2 talks about
related work. Section 3 elaborates on the dataset and network architecture used.
Section 4 provides an overview of our proposed attack. In Section 5 the proposed
methodology for RoI extraction and Kryptonite is discussed. Section 6 highlights
our obtained results, Section 7 highlights the limitations of our study and Section
8 concludes the paper with the scope of further research and improvement.

2 Related Work

2.1 Adversarial Attacks

FGSM The Fast Gradient Sign Method proposed by [3] uses a method where
a given loss function J(x, y), which is almost always cross-entropy loss that the
target network is trained on, is maximised, and the sign of the gradient obtained
is used to control the added perturbation of adjustable magnitude in L∞ norm.

x∗ = x+ ε.sign(∇xJ(x, y)) (1)

I- FGSM The proposed Iterative Fast Gradient Sign Method proposed by [4]
is a simple, but a greatly effective improvement over the simple FGSM attack.
It uses the observation that for any input image x, the gradient of the adopted
loss function is continuously changing. Hence in every iteration, a perturbation is
generated that is optimal for the current gradient obtained. Here, a clip function
is used to control the size of the final perturbation and restrict it to the original
constraint ε.

x∗t+1 = Clipx,ε{x ∗t +α.sign(∇xJ(x∗t, y))} (2)

Projected Gradient Descent proposed by [5] is a variation of FGSM where the
constraint α.T = ε does not exist. Instead, to constrain perturbations, the ad-
versarial samples are ”projected” to their benign counterparts. Images in PGD
are updated as follows:

x∗t+1 = Proj{x ∗t +α.sign(∇xJ(x∗t, y))} (3)

PGD is more powerful than FGSM but it is slower than FGSM as it calculates
gradients for numerous iterations.

MI- FGSM Momentum Iterative Attack proposed by [6] is a version of I-FGSM
that uses the technique of memorization of previous gradients to optimise the
iterative process and find the most effective perturbation. This helps to stabilise
update directions and escape local minima that may yield poor, less-than-ideal
perturbations.

gt+1 = µ ∗ gt +
∇xJ(x, y))

||∇xJ(x, y))||1
(4)

x∗t+1 = Clipx,ε{x ∗t +α.sign(gt+1)} (5)
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DeepFool DeepFool proposed by [7] is an adversarial attack based on the as-
sumption that the neural networks are linear, and that the various classes are
essentially separated by a hyperplane. Here, imperceptible perturbations are
added to take a step forward to push the sample to be classified over the deci-
sion boundary. Since most neural networks are not linear, this is done iteratively
until the adversarial example is optimally constructed. In this paper, we use the
L∞ version of the attack.

2.2 Adversarial Attacks and Defences on Medical Imaging

The intensive research in [2] showed adversarial attacks on medical images are
easy to detect, we improved upon their research by exploiting image regions
and producing more erroneous adversarial features which easily fool DNN’s and
anomaly detectors. An Ensemble of multiple Convolutional Neural Network’s
(CNN) and inclusion of adversarial images while training was proposed in [8] for
mitigating adversarial attacks against simpler FGSM and One - Pixel attacks
but the inclusion of adversarial images while training may not provide resilience
as shown later in table 5. DL systems in production consist of complex data
pipelines, therefore, the addition of new component as proposed in [9] for detec-
tion of adversarial attacks on medical images would be arduous, also as proved
by Carlini and Wagner in [10] the proposed unsupervised statistical anomaly
detection technique can easily be evaded when an adversary targets a specific
defence which is a white box adversary in this case. A novel adversarial bias
field attack was proposed by [11] for chest X-ray classification systems, which
generated more realistic adversarial samples by adding smooth perturbations in-
stead of noises but the attack success rate was less than noise-based adversarial
attacks.

2.3 Analysis of Related Attacks

There have been very few attacks focused on modifying a constrained area of
an image. One such attack is mentioned in [12], which essentially uses gradient
information to adjust the trust region, within a continuously adaptive radius.
With this, the extent of the added noise in the image is restricted, however,
the JumpReLU defence proposed by [13] has provided resilience to this attack
as well. Another attack in this category is the localized BIM attack proposed
by [14], wherein the final perturbations were hard to detect yet efficacy of the
proposed attack is questionable as the attack has more emphasis on minimal
human perceptibility and the paper lacks evaluation with existing adversarial
attacks in terms of drop in network accuracy. We hence believe our attack is a
novel, efficient and effective addition to this limited class of families.

3 Dataset and Model Architecture

We have presented results for 2 datasets and 4 neural nets in this paper. The first
dataset is the Melanoma dataset, whereas the other dataset is the MRI dataset.
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Table 1: CNN Architecture.
Layers Parameters

Input 126x126x1
Conv1 + ReLU 50x3x3, pad = same, stride = 1
Conv2 + ReLU 75x3x3, pad = same, stride = 1

Max Pool 1 2x2, stride 2, pad = 0
Dropout 0.25

Conv3 + ReLU 125x3x3, pad = same, stride = 1
Max Pool 2 2x2, stride 2, pad = 0

Dropout 0.25
FC1 + ReLU 500

Dropout 0.4
FC2 + ReLU 250

Dropout 0.3
FC3 + Sigmoid 1

Total Parameters 60, 307, 326

The first medical dataset we have used is the 2020 ISIC Challenge Dataset [15]
containing 33,126 dermoscopic training images having unique benign and malig-
nant lesions from over 2,000 patients. We split the data into training, validation
and testing sets having 20,000, 6,576 and 6,550 samples respectively. We gen-
erated adversarial samples from the test set. Data augmentations the images
went through include cutout, hue saturation, addition of Gaussian noise, motion
or median blur, optical or grid distortion, as well as rotation and flipping. We
have used EfficentNet-B5 [16] and ResNeXt-50 [17] as these architectures are ex-
tremely complex, and often yield state of the art results for biomedical imaging
datasets as seen in table 3.

The second dataset we have used is the MRI dataset [18]. Here we aim to
identify whether a given MRI of a brain has a tumor or not, and classify it
respectively. The original training set contains 253 images of MRI scans out of
which 155 have a tumour and 98 do not. We augment the dataset to generate
2065 images out of which 1200 are used for training the neural network, 365
are used for validation and 500 are used for testing. To classify images for this
dataset, we have used the VGG16 [19] neural network, which gives near state
of the art results. The second network we use to execute this task is a custom
convolutional neural network. The architecture for the same is provided in table
1. This also yields fairly accurate classification results, as shown later in table 4.

4 Attack Overview

4.1 Threat Model

Today, several effective defences have been created to avoid attacks, however, at-
tacks to circumvent these defences are being continuously created. For example,
the CW attack [20] was able to render defensive distillation almost useless.
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It is important to analyse the vulnerability of any image, which is what
we aim to do with Kryptonite. A vulnerability we exploit through the attack
Kryptonite is one that has been largely ignored by several attacks, and hence
defences: the region of interest. For this attack we assume that the attacker has
access to every aspect of the architecture of the network and its parameters, and
hence assume this attack is white box. Kryptonite launches its attack by focusing
mainly on the region of interest. In most cases, this method effectively manages
to fool the classifier with the addition of minimum noise.

Kryptonite belongs to a class of iterative gradient based attacks, and it aims
to show the ways in which the effectiveness of an attack can be improved by lo-
calising it. We have hence compared Kryptonite to such attacks in terms of drop
in accuracy, effectiveness, efficiency, and resilience to state of the art defences,
and found that focusing on a region of interest indeed improves performance on
all fronts.

4.2 Metrics Used

The distance metric we have chosen to use to evaluate and perform this attack
is the Lp norm metric. Lp distance is expressed as:

||x− x′||p = (

n∑
i=1

|x− x′|)1/p (6)

The metric is used to limit the maximum change in pixel values, and evaluate
the size of the perturbation by measuring the Euclidean distance between the
original and perturbed image.

5 Proposed Methodology

5.1 Extracting Region of Interest

The Region of Interest extractor consists of the following modules:

OTSU Thresholding method We use the methodology given in [21] to bi-
narize the image based on pixel intensities and separate the pixels into classes,
foreground and background. We minimize the weighted within-class variance in
search of optimal threshold which is given below:

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t) (7)

In the above equation ω0 and ω1 are probabilities of two classes which are sepa-
rated by threshold t, and σ2

0 and σ2
1 are the variances for these two classes. For
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Algorithm 1: OTSU Thresholding

Input: Grayscale image
Output: Intensity Threshold

1 For each intensity level compute histogram and intensity level probabilities.
2 Initialize ωi(0) and µi(0).
3 for threshold t = 1, .......upto max(intensity) do
4 update ωi and µi;
5 Compute σ2

b (t);

6 end
7 return max(σ2

b (t)) which corresponds to final threshold value.

L bins of the histogram we compute the class probability ω0,1(t) as follows:

ω0(t) =

t−1∑
i=0

p(i) (8)

ω1(t) =

L−1∑
i=t

p(i) (9)

We minimize the intra-class variance as follows:

σ2
b (t) = σ2 − σ2

w(t) = ω0 (µ0 − µT )
2

+ ω1 (µ1 − µT )
2

= ω0(t)ω1(t) [µ0(t)− µ1(t)]
2

(10)

The above expression is expressed in terms of class probabilities ω and the
class means µ, and the class means are defined as follows:

µ0(t) =

∑t−1
i=0 ip(i)

ω0(t)
(11)

µ1(t) =

∑L−1
i=t ip(i)

ω1(t)
(12)

µT =

L−1∑
i=0

ip(i) (13)

We compute the class probabilities and class means iteratively. Algorithm 1
explains briefly the procedure to minimize the weighted within-class variance. As
we can see from figure 1, the RoI extraction algorithm accurately returns the RoI.
The algorithm is simple yet effective and is highly accurate. Although, one can
obtain decent results using complex segmentation models such as U - Net [22] by
training neural networks on enormous datasets but our method is much simpler
and efficient which leads to an stronger region constricted adversarial attack.

Image Dilation To increase the object area and to accentuate the features we
performed image dilation. To achieve the same we performed the following steps:
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Fig. 1: Process for generation of the RoI on original image, application of OTSU
Thresholding and dilation, and finally, derived RoI

– We convolve the thresholded image obtained from algorithm 1 with a kernel
(matrix of odd size).

– We define the center of the kernel as the anchor point.
– We scan the kernel over the image and calculate the maximum value of the

pixel overlapped by the kernel and replace the image pixel at the anchor point
position with the maximum value. This would increase the white region in
the image and the size of the foreground object.

Topological Structural Analysis We have utilized the contour tracing al-
gorithm given by Suzuki [23]. The algorithm defines hierarchical relationships
among the borders and differentiates between the outer and the hole boundary.
As this is an iterative algorithm it connects groups of 1-pixels that surround
groups of 0-pixels. Then, a raster scan of the image is performed which locates
all possible pixels for a border [24], by detecting whether the pixel has value 1
and the neighboring pixel has value 0. Then a label is assigned to keep track of
the border. Then for each new succeeding pixel, it is either added to an existing
border or a new border with a new label. If two border segments connect then
we reassign labels of pixels to form one border. We return the contour obtained
for skin lesion and the pixels inside it. For a 512x512x3 image from [15], RoI ex-
traction took 1.99 milliseconds whereas for 126x126x1 grayscale image from [18],
RoI extraction took 0.88 milliseconds.

Our proposed RoI extraction algorithm performs perfectly for images hav-
ing distinct contour lines but noisy images or images having no contour lines
surrounding the RoI, our algorithm returns arbitrary RoI.

5.2 Kryptonite:

Kryptonite comes under a class of momentum iterative gradient-based methods,
and hence is compared to similar attacks in this paper. Kryptonite is essentially
an adversarial attack proposed to improve adversarial attacks boosted by mo-
mentum even further, by monitoring the changes observed specifically in the re-
gion of interest. Kryptonite uses a region of interest extractor(ρ) that specifically
monitors these features to evaluate the progress(P) of the attack. The change
of these features is used to optimise the momentum applied to simple Itera-
tive Fast Gradient Sign Method. Essentially, this network aims to demonstrate
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Algorithm 2: Kryptonite adversarial attack

Input: Image x, Classifier f with loss function J, Region of Interest Extractor
ρ, Size of perturbation ε, Iterations T, Decay Weight ω, Initial decay
factor µ0

Output: Perturbation x* clipped as ‖x ∗ −x‖∞ 6 ε
1 Initialize g0 = 0, x∗0 = x and α = ε

T
.

2 for threshold t = 0 to (T-1) do
3 Input x∗t to f and retrieve ∇xJ(x, y).
4 Update gt+1 by accumulating the velocity vector in the gradient direction:

gt+1 = µt ∗ gt +
∇xJ(x, y))

||∇xJ(x, y))||1

5 Update x∗t+1 by applying sign gradient:

x∗t+1 = Clipx,ε{x ∗t +α.sign(gt+1)}

6 Calculate progress P:

P = ‖ρ(x∗t+1)− ρ(x∗t)‖2

7 Update decay factor:

µt+1 =
1

P
∗ ω

8 end
9 return x∗T−1

the increased susceptibility of the images, by monitoring the region of interest.
Momentum is a method used to optimise the efficiency of gradient descent and
provide a certain acceleration to the algorithm to help it easily navigate through
local minima, and other hurdles effectively.

Kryptonite uses the region of interest(ρ) method to evaluate the attack’s
exact progress(P) as:

P = ‖ρ(x∗t+1)− ρ(x∗t)‖2 (14)

This progress in the absolute area of interest is used to determine the decay
factor for the next iteration. The decay factor can be written as:

µt+1 =
1

P
∗ ω (15)

Where ω is the decay weight. This is a hyper parameter to be specified by the
user according to the network requirements. If this hyper parameter is too small,
the network will be caused to act like Iterative Fast Gradient Sign Method. If
the gradient is too large, the inertia of the attack would increase which would
not allow any significant progress to be made.
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(a) Dermatology Dataset (b) Radiology Dataset

Fig. 2: Comparison of ROC score to variation in decay wt.

The gradient is then updated using this newly obtained decay factor in a
similar way as that used in MI-FGSM.

gt+1 = µt ∗ gt +
∇xJ(x, y))

||∇xJ(x, y))||1
(16)

This updated gradient is used to assess the optimal perturbation to add to
the original image.

x∗t+1 = x ∗t +α.sign(gt+1) (17)

6 Results

6.1 Attack

We perform all attacks in the white-box setting. We used the Cleverhans li-
brary [25] for the implementation of the attack algorithms. The optimal hyper
parameters for all the attack algorithms are provided in Table 2. These param-
eters were chosen by monitoring network accuracy, perturbation size and actual
perceptibility of perturbations to the naked eye. A small increment to optimal

Table 2: Optimal Hyper Parameters for all the attacks for the given two datasets.
Melanoma

Epsilon Iterations Alpha Decay Factor Overshoot
EffNet ResNext EffNet ResNext EffNet ResNext EffNet ResNext EffNet ResNext

FGSM 0.08 0.07 – – – – – – – –

DeepFool – – 60 45 – – – – 0.07 0.04

PGD 0.04 0.03 16 12 0.04/16 0.03/12 – – – –

MIFGSM 0.03 0.01 10 7 0.04/10 0.02/7 1.5 1 – –

KRYPTONITE 0.01 0.007 15 5 0.01/15 0.007/5 *0.5 *1 – –

MRI
Epsilon Iterations Alpha Decay Factor Overshoot

CNN VGG16 CNN VGG16 CNN VGG16 CNN VGG16 CNN VGG16

FGSM 0.1 0.15 – – – – – – – –

DeepFool – – 50 65 – – – – 0.06 0.08

PGD 0.03 0.05 20 12 0.03/20 0.05/12 – – – –

MIFGSM 0.02 0.03 12 15 0.02/12 0.03/15 0.5 1 – –

KRYPTONITE 0.02 0.04 16 20 0.02/16 0.04/20 *0.5 *0.7 – –
* Inital decay factor for Kryptonite
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Table 3: The table below shows the average of network accuracy after conducting
the experiment five times on the Dermatology Dataset.

Samples
Effnet ResNext

Accuracy Size of Pert. Accuracy Size of Pert.

CLEAN 0.881 – 0.890 –

FGSM 0.442 5.2%/5.9% 0.391 4.7%/5.5%

DeepFool 0.419 1.5%/2.3% 0.406 1.2%/1.4%

PGD 0.273 2.3%/2.8% 0.206 1.9%/2.5%

MIFGSM 0.229 2.6%/3.0% 0.187 2.4%/2.9%

KRYPTONITE 0.155 1.7%/2.2% 0.114 1.5%/1.7%

Size of perturbation is expressed as a percentage of added perturbation to image
measured using the standard L2 norm. The value of the left of the slash is aver-
age case percentage perturbation, and to the right is the worst case percentage
perturbation.

Table 4: The table below shows the average of network accuracy after conducting
the experiment six times on the Radiology Dataset.

Samples
Custom CNN VGG16

Accuracy Size of Pert. Accuracy Size of Pert.

CLEAN 0.942 – 0.966 –

FGSM 0.474 7.0%/7.6% 0.490 7.3%/7.8%

DeepFool 0.379 1.8%/2.5% 0.399 2.1%/2.9%

PGD 0.229 2.5%/3.0% 0.293 2.6%/3.1%

MIFGSM 0.161 2.8%/3.4% 0.247 3.0%/3.7%

KRYPTONITE 0.147 1.9%/2.6% 0.216 2.0%/2.7%

Size of perturbation is expressed as a percentage of added perturbation to image
measured using the standard L2 norm. The value of the left of the slash is aver-
age case percentage perturbation, and to the right is the worst case percentage
perturbation.

values of epsilon or increasing the number of iterations will lead to further drop
in accuracy but increase perturbation size and also the final adversarial image
may look like an image someone has tampered with. Furthermore, The optimal
decay weight for kryptonite can be observed from figure 2. As can be observed
from figure 2, this parameter makes a great difference to the reduction in ROC
score, and the optimal value must be chosen for the best results.

All of our experiments were conducted on the Radiology and the Dermatol-
ogy datasets and we chose to fool four neural networks that provided the best
results for the classification of these images. In table 3 we see the ROC scores for
the networks EfficientNet and ResNext, on clean samples, and with the adversar-
ial samples generated using the attacks FGSM, DeepFool, PGD, MIFGSM, and
Kryptonite respectively for the dermatology (Melanoma) dataset. All of the re-
sults obtained are the average ROC scores from the five trials conducted. From
table 3 we can see that ResNext is more vulnerable to adversarial samples in
comparison to EffNet. We note that due to the inherent assumption of Deep-
fool that neural networks are all but linear it fails to outperform other iterative
attacks on these datasets.
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Fig. 3: Grad-CAM for Melanoma (kryptonite sample)

Our proposed attack as can be seen from table 3 caused max drop in network
accuracy. We have utilized the Gradient-weighted Class Activation Mapping
(Grad-CAM) technique [26] which is used to find the most important regions
for any given input image which affect the network output the most. From
Grad-CAM image shown in figure 3 we can see that the classifier takes into
consideration the lesion for making its prediction. Now, since kryptonite con-
stricts its focus as much as it can on the region of interest which is the lesion for
this dataset, the classifier becomes more vulnerable when an adversarial attack
targets the region on which the classification most depends on, leading to the
best misclassifcation rate.

Furthermore, kryptonite does not push the attention completely away from
lesion in the final adversarial sample. On the contrary, the other attacks dis-
tract the classifier towards the regions completely irrelevant for the classifica-
tion which though leads to a significant drop in network accuracy but in our
rigorous experiments we have seen that in kryptonite wherein all the adversarial
perturbations are all but concentrated inside a fixed region (of highest interest
to classifier) cause the max misclassification rate. This is because in comparison
to other adversarial samples wherein the perturbations are spread throughout
the image, the classifier randomly selects the region and uses it as an important
region for classification. On the other hand, a classifier fed with a kryptonite
sample will always choose the lesion for classification which indeed has all of the
perturbations leading to the highest drop in network accuracy.

On similar lines for the MRI dataset we can infer from table 4 that the
Custom Convolutional Neural Network is more vulnerable to adversarial samples
in comparison to VGG16 network. All of the results obtained are the average
ROC scores from the six trials conducted. From the Grad-CAM images in figure
4 we can see that for a given grayscale MRI image having a tumour, the region

Fig. 4: Grad-CAM for MRI (kryptonite sample)
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(a) EfficientNet (b) ResNext

(c) Custom CNN (d) VGG16

Fig. 5: Comparison of ROC score to constrain ε

occupied by the tumor is most important for a classifier. In our rigorous study we
found out that kryptonite restricted perturbations only to the tumour leading
to malign samples being classified as benign and consequently leading to highest
misclassification rates.

In figure 5, it is seen that Kryptonite lowers the ROC score of all the networks
tested upon better than any other attacks presented almost consistently, for
perturbation sizes constrained by the hyperparameter ε, and ultimately drops the
score of generated samples to 0. Also, for DeepFool we noticed a weak negative
correlation between the overshoot parameter and ROC score such that a step
wise increase in that parameter led to a linear decrease in ROC score as shown
in fig. 6.

6.2 Perturbation size

Since having the highest drop in network accuracy is not the only criterion for
a strong adversarial attack, as we can see from figure 7 that the final kryptonite
adversarial sample pertubations are almost imperceptible and looks very similar
to the clean sample to a naked eye.

In the tables 3 and 4, we can observe the average and worse case perturbation
size for each of the attack and the corresponding network accuracy (at average
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(a) Melanoma Dataset (b) Radiology Dataset

Fig. 6: Comparison of ROC score to overshoot for DeepFool

Fig. 7: Comparison of Clean, FGSM, DeepFool, MIFGSM, PGD and Kryptonite
sample

perturbation level). Furthermore, we note that DeepFool provides the minimal
perturbations as it was designed to do so but kryptonite is a powerful alternative
as well with highly respectable perturbation sizes in comparison to DeepFool and
highest drop in network accuracy. As mentioned before kryptonite ensures the
classifier uses the lesion/tumor for classification, consequently, smaller pertur-
bations to the same cause high misclassification rates as can be seen from figure
5.

6.3 Adversarial Defence for Kryptonite

We have evaluated our proposed method on three types of adversarial defence,
the detailed results and analysis is provided in table 5. These include Adversarial
Training [3], Pixel Deflection (PD) [27] and Defensive Distillation (DD) [28]. The
results are an average of five rigorous trials conducted. The JumpReLU defence
[13] was easily broken with increasing perturbation size, hence, was avoided in
this study.
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Table 5: The table below shows the average (5 trials conducted) of adversarial
defence results for the proposed attack. The metrics on the left of the slash
represent accuracy of the model with adversarial samples as input. The metrics
on the right of the slash represents the accuracy on clean samples.
Melanoma

FGSM DeepFool PGD MIFGSM Our’s
EffNet ResNext EffNet ResNext EffNet ResNext EffNet ResNext EffNet ResNext

Adv.Train

(FGSM) 0.71/0.82 0.79/0.86 0.48/0.82 0.54/0.86 0.29/0.82 0.33/0.86 0.28/0.82 0.29/0.86 0.19/0.82 0.27/0.86
Adv.Train

(DeepFool) 0.69/0.84 0.73/0.85 0.78/0.84 0.80/0.85 0.46/0.84 0.47/0.85 0.40/0.84 0.44/0.85 0.31/0.84 0.32/0.85
Adv.Train

(PGD) 0.73/0.76 0.75/0.78 0.73/0.76 0.74/0.78 0.67/0.76 0.70/0.78 0.64/0.76 0.69/0.78 0.58/0.76 0.60/0.78
Adv.Train

(MIFGSM) 0.62/0.65 0.66/0.68 0.59/0.65 0.60/0.68 0.58/0.65 0.58/0.68 0.51/0.65 0.55/0.68 0.47/0.65 0.52/0.68
Adv.Train

(Our’s) 0.69/0.72 0.70/0.74 0.65/0.72 0.66/0.74 0.62/0.72 0.65/0.74 0.59/0.72 0.65/0.74 0.57/0.72 0.62/0.74

PD 0.49/0.56 0.50/0.59 0.44/0.56 0.48/0.59 0.39/0.56 0.41/0.59 0.30/0.56 0.33/0.59 0.20/0.56 0.23/0.59

DD 0.85/0.86 0.85/0.88 0.83/0.86 0.84/0.88 0.77/0.86 0.80/0.88 0.74/0.86 0.79/0.88 0.70/0.86 0.73/0.88

MRI
FGSM DeepFool PGD MIFGSM Our’s

CNN VGG16 CNN VGG16 CNN VGG16 CNN VGG16 CNN VGG16
Adv.Train

(FGSM) 0.81/0.88 0.84/0.93 0.42/0.88 0.47/0.93 0.38/0.88 0.41/0.93 0.24/0.88 0.30/0.93 0.18/0.88 0.23/0.93
Adv.Train

(DeepFool) 0.79/0.90 0.86/0.91 0.76/0.90 0.78/0.91 0.43/0.90 0.50/0.91 0.25/0.90 0.33/0.91 0.17/0.90 0.25/0.91
Adv.Train

(PGD) 0.80/0.83 0.82/0.84 0.78/0.83 0.79/0.84 0.71/0.83 0.75/0.84 0.66/0.83 0.70/0.84 0.57/0.83 0.63/0.84
Adv.Train

(MIFGSM) 0.74/0.76 0.75/0.79 0.67/0.76 0.69/0.79 0.56/0.76 0.62/0.79 0.69/0.76 0.73/0.79 0.44/0.76 0.49/0.79
Adv.Train

(Our’s) 0.80/0.82 0.81/0.85 0.76/0.82 0.78/0.85 0.73/0.82 0.76/0.85 0.68/0.82 0.69/0.85 0.64/0.82 0.69/0.85

PD 0.51/0.60 0.60/0.67 0.53/0.60 0.63/0.67 0.47/0.60 0.53/0.67 0.46/0.60 0.51/0.67 0.16/0.60 0.19/0.67

DD 0.92/0.93 0.94/0.96 0.89/0.93 0.93/0.96 0.86/0.93 0.89/0.96 0.84/0.93 0.85/0.96 0.79/0.93 0.84/0.96

In the table above values mentioned in bold font indicate resilience to a particular attack. We have chosen a drop
of less than 10% in accuracy from the original accuracy of a particular network on clean samples as a sign of
robustness or resilience to a particular attack.
For example, consider PGD Adversarial Training for Melanoma dataset performed on ResNext network. Now at-
tacking this network with MIFGSM adversarial samples results in an accuracy of 69% which is a less than 10% drop
from the accuracy on clean samples (78%). Hence, we say that performing PGD adversarial training on ResNext
makes it robust to MIFGSM.
If an adversarial training defence trained on a particular attack is implemented on a network to counter the same
attack, the effectiveness of the implemented defence does not indicate any kind of robustness.

Adversarial Training We performed adversarial training using each of the
attack algorithms using both of our datasets on their respective classifiers. To
ensure the classifier does not fail to classify on clean samples we trained the clas-
sifiers on complete training data which included 65% adversarial samples and
35% clean samples. All the adversarial attacks were kept at their optimal pa-
rameters while evaluating defence as well. As we can see from table 5 re - train-
ing classifiers using FGSM and DeepFool did not help much in making them
more robust against adversaries. On the other hand, PGD adversarial train-
ing which is considered the best was able to provide robustness against FGSM,
DeepFool and even MIFGSM (for ResNext). We noticed that PGD adversarial
training was really slow as compared to others. Adversarial training done using
MIFGSM helped make the classifiers robust against FGSM, DeepFool and PGD
(for EffNet). Furthermore, adversarial training performed using the samples gen-
erated by our proposed method show that we were able to make our classifiers
robust to FGSM, DeepFool, PGD (excluding EffNet case) and even MIFGSM
(for ResNext). In terms of accuracy on clean images, a classifier trained using
DeepFool samples performs the best owing to its small perturbation size but
this does not ensure robustness whereas using PGD or Kryptonite adversarial
training though we lose out a bit on accuracy on clean images we still have a
higher chance towards resilience to adversaries. Adversarial training gives a false
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sense of security [29] and for very large scale datasets it seems impractical to
re - train the huge neural nets just for certain amount of robustness. Further-
more, the robustness achieved through this method seems limited as we can infer
from table 5 that this method could not bring robustness towards our proposed
attack. Another observation made was that going beyond optimal parameters
resulted in breaking this defence at the cost of perceptible perturbations.

Pixel Deflection In this method proposed by [27], we randomly select a pixel
and replace that pixel with another randomly selected pixel, this process the
authors have called as pixel deflection (PD). Then, we use a Robust Class Ac-
tivation Map (RCAM) to select pixel which is least important for classification
and deflect that pixel. The added noise is then removed using Wavelet Denoising
(WD). The authors of this defence base their intuition on the fact that adver-
sarial attacks are antagonistic to region’s of interest but for kryptonite region of
interest is everything. Hence, as we can see from table 5, this defence struggles
to provide any kind of resilience towards our proposed attack. Another obser-
vation was that this method led to a big drop of network accuracy on clean
images. The parameter deflections was set at 120, 100, 100, 80 for the networks
EffNet, ResNext, CNN and VGG16 respectively. Pixel Deflection performs the
best in terms of computational efficiency but with increasing ε this approach
failed as well. Also, we found out that in some cases the amount of noise even
after performing Wavelet Denoising was really high which lead to poor classifi-
cation performance on clean images as information critical to the classifier got
deflected as well.

Defensive Distillation Proposed by [28], the idea is to train a neural network
having a softmax output layer at some temperature T using the hard or discrete
labels. Then, the obtained class probabilities or soft labels are used to train
another neural network with the same architecture as the original one which is
called a distilled network. In our experiments the parameter T was set at 10,
15, 20 and 20 for the classifiers EffNet, ResNext, CNN and VGG16 respectively.
From table 5 we can see that this defence provides very good resilience to all of
the attacks at the same time also retains accuracy on clean samples but this idea
just makes the generation of adversarial samples difficult. Secondly, it has been
shown by Carlini in [30] that distillation can be easily broken. In our preliminary
testing using the method proposed by [30], we saw a misclassification rate of a
respectable 64% for our proposed method. Also, increasing perturbation size to
perceptible levels led to an increased misclassification rate for this method of
defence. Defensive distillation hides the gradient, making it tough for us to find
adversarial samples. We found out that this method flattens out the model com-
pletely in comparison to adversarial training. Furthermore, in our preliminary
black - box testing wherein we attacked a distilled model using adversarial sam-
ples generated by another model having similar architecture, our attack produced
a misclassification rate of 79% (conducted on the MRI dataset). Furthermore,
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Table 6: The table below shows the average of time (10 trials conducted) required
to generate a single adversarial sample (in seconds) with all the hyper parameters
of the attacks at their optimal values.

Attack
Melanoma MRI

EffNet ResNext CNN VGG16

FGSM 0.23 0.19 0.11 0.14

DeepFool 0.96 0.90 0.84 0.87

PGD 0.75 0.70 0.61 0.64

MIFGSM 0.43 0.41 0.32 0.35

KRYPTONITE 0.44 0.41 0.31 0.35

we plan to implement more advanced defence and adversarial sample detection
techniques for this proposed attack.

6.4 Time Efficiency Comparison

Table 6 shows the efficiency of our proposed attack. Though FGSM takes the
least amount of time to generate an adversarial sample, its a comparatively
weak attack as shown before. Furthermore, we are performing better in terms
of efficiency in comparison to PGD and DeepFool attacks. These results further
extend towards adversarial training as well with PGD and DeepFool being the
slowest, FGSM the fastest while, MIFGSM and our proposed method perform
similarly.

7 Limitations of the study and Future work

The attack presented in this study has only been evaluated upon certain medical
datasets due to difficulties in generalising the attack. A limitation of our attack
is that identifying a region of interest for more elaborate images is challenging.
In the future, we hope to advance the scope of this algorithm to identify regions
of interest for diverse images and hence present results for standard datasets. We
also hope to motivate the creation of a more robust defence in order to protect
the main region of interest.

8 Conclusion

In this paper we have presented the adversarial attack Kryptonite, which is used
to find the most optimal perturbation that can be added to an image in order
to encourage a network to make an incorrect prediction. This attack that hides
in plain sight, uses the changes in a region of interest to find the least possible
added noise in a constricted region to fool a given network. The effectiveness of
this attack, as seen with the given empirical evidence, shows that the region of
interest of an image is a major vulnerability in an image that can be exploited.
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Furthermore, it is seen that more changes constricted to this region can mitigate
the effectiveness of some state of the art defences, as compared to those attacks
that are more antagonistic to the region of interest. We have hence shown that
localising the added perturbation makes an attack more robust.
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